论文标题

MGTCOM:多模式图中的社区检测

MGTCOM: Community Detection in Multimodal Graphs

论文作者

Dmitriev, E., Chekol, M. W., Wang, S.

论文摘要

社区检测是发现网络中共享类似模式的节点组的任务。随着深度学习的最新进展,利用图表的学习和深度聚类的方法在社区检测中显示出了很大的结果。但是,这些方法通常依赖于网络的拓扑结构(i)忽略重要特征,例如网络异质性,时间性,多模式性和其他可能相关的功能。此外,(ii)不知道社区的数量是先验的,并且通常留给模型选择。另外,(iii)在多模式网络中,所有节点都被认为具有对称的特征。虽然对于同质网络而言,但大多数现实世界网络在功能可用性通常会有所不同。在本文中,我们提出了一个新颖的框架(名为MGTCOM),该框架克服了上述挑战(i) - (iii)。 MGTCOM通过多模式特征学习来识别社区,通过利用一种新的抽样技术来无监督的时间嵌入学习。重要的是,MGTCOM是一个端到端的框架,优化了网络嵌入,社区和串联社区的数量。为了评估其性能,我们对许多多模式网络进行了广泛的评估。我们发现我们的方法与最先进的方法具有竞争力,并且在归纳推理方面表现良好。

Community detection is the task of discovering groups of nodes sharing similar patterns within a network. With recent advancements in deep learning, methods utilizing graph representation learning and deep clustering have shown great results in community detection. However, these methods often rely on the topology of networks (i) ignoring important features such as network heterogeneity, temporality, multimodality, and other possibly relevant features. Besides, (ii) the number of communities is not known a priori and is often left to model selection. In addition, (iii) in multimodal networks all nodes are assumed to be symmetrical in their features; while true for homogeneous networks, most of the real-world networks are heterogeneous where feature availability often varies. In this paper, we propose a novel framework (named MGTCOM) that overcomes the above challenges (i)--(iii). MGTCOM identifies communities through multimodal feature learning by leveraging a new sampling technique for unsupervised learning of temporal embeddings. Importantly, MGTCOM is an end-to-end framework optimizing network embeddings, communities, and the number of communities in tandem. In order to assess its performance, we carried out an extensive evaluation on a number of multimodal networks. We found out that our method is competitive against state-of-the-art and performs well in inductive inference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源