论文标题
单一代数,最小乘坐和游离亚代代代数的不及时性
Amenability of monomial algebras, minimal subshifts and free subalgebras
论文作者
论文摘要
我们给出了单一代数的舒适性的组合表征,并证明了单一佛罗纳序列的存在,回答了由于Ceccherini-Silberstein和Samet-Vaillant引起的一个问题。然后,我们使用我们的表征来证明,整个简单的单一代数,每个模块都可以详尽地修正。我们得出的结论是,最小乘坐的卷积代数承认同一特性。我们推断出任何最小的熵熵次要缩影都会产生一个分级代数,该代数无法满足Bartholdi提出的Vershik猜想的扩展。最后,我们表明,不符合单一的代数必须包含非交通性的无次代代代数。举例说明了我们结果中假设的清晰度和必要性。
We give a combinatorial characterization of amenability of monomial algebras and prove the existence of monomial Folner sequences, answering a question due to Ceccherini-Silberstein and Samet-Vaillant. We then use our characterization to prove that over projectively simple monomial algebras, every module is exhaustively amenable; we conclude that convolution algebras of minimal subshifts admit the same property. We deduce that any minimal subshift of positive entropy gives rise to a graded algebra which does not satisfy an extension of Vershik's conjecture on amenable groups, proposed by Bartholdi. Finally, we show that non-amenable monomial algebras must contain noncommutative free subalgebras. Examples are given to emphasize the sharpness and necessity of the assumptions in our results.