论文标题
右常规三元组
Right regular triples of semigroups
论文作者
论文摘要
令$ {\ cal m}(s;λ; p)$表示rees $ i \ timesλ$矩阵半群,而在semigroup $ s $上没有零,其中$ i $是单身人士。如果$θ_s$表示半群$ s $的正确定期表示的内核,则据说triple $ a,b,c $ c $是正常的,如果有映射$ a \ stackrel {p} {p} {\ longleftarrow} {\ longleftarrow} b $ and $ b $ b $ b \ b \ stackrel $ $ {\ cal m}(a; b; p)/θ_ {{\ cal m}(a; b; p; p)} \ cong {\ cal m}(c; b; p; p')$。在本文中,我们研究了半群的正常三元组。
Let ${\cal M}(S; Λ; P)$ denote a Rees $I\times Λ$ matrix semigroup without zero over a semigroup $S$, where $I$ is a singleton. If $θ_S$ denotes the kernel of the right regular representation of a semigroup $S$, then a triple $A, B, C$ of semigroups is said to be right regular, if there are mappings $A\stackrel{P}{\longleftarrow}B$ and $B\stackrel{P'}{\longrightarrow}C$ such that ${\cal M}(A; B; P)/θ_{{\cal M}(A; B; P)}\cong {\cal M}(C; B; P')$. In this paper we examine right regular triples of semigroups.