论文标题
使用时间卷积网络自动编码器检测虚拟学习中的脱离接触是一种异常
Detecting Disengagement in Virtual Learning as an Anomaly using Temporal Convolutional Network Autoencoder
论文作者
论文摘要
学生参与是满足虚拟学习计划目标的重要因素。学生参与度的自动测量为讲师提供了有用的信息,以实现学习计划目标和个性化计划的交付。许多现有方法使用二进制分类的传统框架(将视频片段分类为参与或脱离接入类别),多级分类(将视频片段分类为对应于不同级别的参与度的多个类)或回归(估计与参与水平的连续值))。但是,我们观察到,尽管参与行为大多是明确定义的(例如,集中精力,不要分心),但可以通过各种方式表达脱离接触。此外,在某些情况下,分离类别的数据可能不足以培训可概括的二进制或多类分类器。为了解决这种情况,在本文中,我们首次提出了检测到虚拟学习中的脱离接触,作为一种异常检测问题。我们设计了各种自动编码器,包括时间卷积网络自动编码器,长短记忆自动编码器和FeedForward自动编码器,并使用不同的行为和影响基于视频的学生脱离接触检测功能的功能。我们在两个公开可用的学生参与数据集(Daisee and Emotiw)进行实验的结果表明,与二进制分类器相比,提议的脱离接触检测方法的优势是将视频分类为参与式的类别与脱离接纳的类别(在接收者曲线下的平均改善范围内,该区域的平均改善和均一领域的平均改善和22%的领域,该领域的平均改善和面积为22%的领域。
Student engagement is an important factor in meeting the goals of virtual learning programs. Automatic measurement of student engagement provides helpful information for instructors to meet learning program objectives and individualize program delivery. Many existing approaches solve video-based engagement measurement using the traditional frameworks of binary classification (classifying video snippets into engaged or disengaged classes), multi-class classification (classifying video snippets into multiple classes corresponding to different levels of engagement), or regression (estimating a continuous value corresponding to the level of engagement). However, we observe that while the engagement behaviour is mostly well-defined (e.g., focused, not distracted), disengagement can be expressed in various ways. In addition, in some cases, the data for disengaged classes may not be sufficient to train generalizable binary or multi-class classifiers. To handle this situation, in this paper, for the first time, we formulate detecting disengagement in virtual learning as an anomaly detection problem. We design various autoencoders, including temporal convolutional network autoencoder, long-short-term memory autoencoder, and feedforward autoencoder using different behavioral and affect features for video-based student disengagement detection. The result of our experiments on two publicly available student engagement datasets, DAiSEE and EmotiW, shows the superiority of the proposed approach for disengagement detection as an anomaly compared to binary classifiers for classifying videos into engaged versus disengaged classes (with an average improvement of 9% on the area under the curve of the receiver operating characteristic curve and 22% on the area under the curve of the precision-recall curve).