论文标题

治疗RSPN:顺序治疗方案的循环总和产物网络

Treatment-RSPN: Recurrent Sum-Product Networks for Sequential Treatment Regimes

论文作者

Dejl, Adam, Deep, Harsh, Fei, Jonathan, Saeedi, Ardavan, Lehman, Li-wei H.

论文摘要

总和网络(SPN)最近成为一种新型的深度学习体系结构,实现了高效的概率推断。自引入以来,SPN已应用于广泛的数据模式,并扩展到时间序列数据。在本文中,我们提出了一个通用框架,用于使用经常性的总和 - 产品网络(RSPN)建模顺序治疗决策行为和治疗反应。使用我们的框架开发的模型受益于RSPN功能的全部范围,包括建模数据的完整分布的能力,无缝处理潜在变量,缺失值和分类数据,并有效地执行边际和条件推断。我们的方法与RSPN的期望最大化算法的新型变体相辅相成,从而有效地训练了我们的模型。我们在合成数据集以及MIMIC-IV重症监护病房医疗数据库中评估了我们的方法。我们的评估表明,我们的方法可以在合成数据上与基本真相的数据生成过程紧密匹配,并在使用可易和可解释的模型的同时获得接近神经和概率基准的结果。

Sum-product networks (SPNs) have recently emerged as a novel deep learning architecture enabling highly efficient probabilistic inference. Since their introduction, SPNs have been applied to a wide range of data modalities and extended to time-sequence data. In this paper, we propose a general framework for modelling sequential treatment decision-making behaviour and treatment response using recurrent sum-product networks (RSPNs). Models developed using our framework benefit from the full range of RSPN capabilities, including the abilities to model the full distribution of the data, to seamlessly handle latent variables, missing values and categorical data, and to efficiently perform marginal and conditional inference. Our methodology is complemented by a novel variant of the expectation-maximization algorithm for RSPNs, enabling efficient training of our models. We evaluate our approach on a synthetic dataset as well as real-world data from the MIMIC-IV intensive care unit medical database. Our evaluation demonstrates that our approach can closely match the ground-truth data generation process on synthetic data and achieve results close to neural and probabilistic baselines while using a tractable and interpretable model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源