论文标题
抗对称解决方案的不存在,用于分数Hardy-Hénon系统
Nonexistence of anti-symmetric solutions for fractional Hardy-Hénon System
论文作者
论文摘要
我们将有关超平面$ \ {x_n = 0 \} $的反对称解决方案研究到以下分数Hardy-Hénon系统$$ \ left \ left \ weet \ {\ okent {aligned}&( - δ)^{s_1^{s_1} \\&( - δ)^{s_2} v(x)= | x |^βu^q(x),\ \ x \ in \ Mathbb {r} _+^n,\^n,\\&U(x)\ geq 0,\ geq 0,\ \ \ v(x) \ end {Aligned} \ right。 $$其中$ 0 <s_1,s_2 <1 $,$ n> 2 \ max \ {s_1,s_2 \} $。在某些相应的$α,β$的假设下,通过移动球和移动平面的方法,在某些$(P,Q)$的某些适当域(P,Q)$中获得了反对称溶液的不存在。特别是对于$ s_1 = s_2 $的情况,我们的结果之一表明,$(p,q)$的一个域,其中不存在适当的衰减条件的抗对称溶液的存在是正确的,它位于$α,β$ $α,β$的适当条件下的分数SOBOLEV的双曲线上。
We study anti-symmetric solutions about the hyperplane $\{x_n=0\}$ to the following fractional Hardy-Hénon system $$ \left\{\begin{aligned} &(-Δ)^{s_1}u(x)=|x|^αv^p(x),\ \ x\in\mathbb{R}_+^n, \\&(-Δ)^{s_2}v(x)=|x|^βu^q(x),\ \ x\in\mathbb{R}_+^n, \\&u(x)\geq 0,\ \ v(x)\geq 0,\ \ x\in\mathbb{R}_+^n, \end{aligned}\right. $$ where $0<s_1,s_2<1$, $n>2\max\{s_1,s_2\}$. Nonexistence of anti-symmetric solutions are obtained in some appropriate domains of $(p,q)$ under some corresponding assumptions of $α,β$ via the methods of moving spheres and moving planes. Particularly, for the case $s_1=s_2$, one of our results shows that one domain of $(p,q)$, where nonexistence of anti-symmetric solutions with appropriate decay conditions holds true, locates at above the fractional Sobolev's hyperbola under appropriate condition of $α, β$.