论文标题
量化无序材料的结构
Quantifying the Structure of Disordered Materials
论文作者
论文摘要
对开发玻璃材料详细结构的框架的持久兴趣产生了许多结构描述符,这些描述符在一般适用性和可解释性之间进行权衡。但是,没有人将晶体元素框架的简单性和广泛的预测能力结合在一起,用于结晶材料。从玻璃材料的局部原子环境中的假设工作,通过焓最小化与原子坐标空间中的低维歧管的限制,我们发展了一个新型的广义距离函数,即高斯积分内产物(GIIP)距离,与凝集的聚类和扩散映射相关,以参数化。将此方法应用于二维模型晶体和三维二元模型金属玻璃,导致参数可解释为协调数,组成,体积应变和局部对称性。特别是,我们表明,更缓慢的淬火玻璃具有较高程度的局部四面体对称性,而牺牲了循环对称性。尽管这些描述符需要事后解释,但它们最大程度地减少了源于结晶材料科学的偏置,并阐明了一系列结构趋势,否则可能会错过这些趋势。
Durable interest in developing a framework for the detailed structure of glassy materials has produced numerous structural descriptors that trade off between general applicability and interpretability. However, none approach the combination of simplicity and wide-ranging predictive power of the lattice-grain-defect framework for crystalline materials. Working from the hypothesis that the local atomic environments of a glassy material are constrained by enthalpy minimization to a low-dimensional manifold in atomic coordinate space, we develop a novel generalized distance function, the Gaussian Integral Inner Product (GIIP) distance, in connection with agglomerative clustering and diffusion maps, to parameterize that manifold. Applying this approach to a two-dimensional model crystal and a three-dimensional binary model metallic glass results in parameters interpretable as coordination number, composition, volumetric strain, and local symmetry. In particular, we show that a more slowly quenched glass has a higher degree of local tetrahedral symmetry at the expense of cyclic symmetry. While these descriptors require post-hoc interpretation, they minimize bias rooted in crystalline materials science and illuminate a range of structural trends that might otherwise be missed.