论文标题
Anderson $ A $模型的特殊功能的残留在特征图
Residue of special functions of Anderson $A$-modules at the characteristic graph
论文作者
论文摘要
令$ e $为$ \ mathbb {c} _ {\ infty} $上的Anderson $ a $ -module。 $ e $的时期晶格与其特殊功能模块有关,该模块是通过[GM21]中作者引入的非传统同构的。在本文中,我们通过将其解释为沿特征图的残基形态来解释逆图的修改是规范的。在各种情况下已经观察到了这种现象。本文的主要创新是成本上的(可允许的可允许打开,可供负担的站点等),该框架提供了一个方便的框架,以开发$ e(\ mathbb {c} _ {\ infty})$的束带的概念。
Let $E$ be an Anderson $A$-module over $\mathbb{C}_{\infty}$. The period lattice of $E$ is related to its module of special functions by means of a non-canonical isomorphism introduced by the authors in [GM21]. In this paper, we explain how a modification of the inverse map is canonical by interpreting it as a residue morphism along the characteristic graph. This phenomenon has already been observed in various situations. The main innovation of this text is that of costability (costable admissible opens, costable site, etc.) which provides a convenient framework to develop the notion of sheaves of $E(\mathbb{C}_{\infty})$-valued meromorphic functions on the rigid analytic plane.