论文标题

皮秒旋转轨道扭矩引起的相干磁化切换在铁磁铁中

Picosecond Spin-Orbit Torque Induced Coherent Magnetization Switching in a Ferromagnet

论文作者

Polley, Debanjan, Pattabi, Akshay, Rastogi, Ashwin, Jhuria, Kaushalya, Diaz, Eva, Singh, Hanuman, Lemaitre, Aristide, Hehn, Michel, Gorchon, Jon, Bokor, Jeffrey

论文摘要

电气可控的非易失性磁性记忆在替换基于半导体的技术方面具有巨大的潜力。最近,由于设备的寿命增加和操作速度,人们对自旋轨道扭矩(SOT)诱导的磁化逆转引起了浓厚的兴趣。然而,最近的SOT切换研究揭示了由于逆转过程中磁性域的成核的随机性而导致〜ns范围的孵育延迟。在这里,我们在实验上证明了铁磁铁的超快SOT诱导的磁化开关动力学,而无需避免成核过程并相干地驱动磁化强度,而无需孵育。我们采用超快速照射开关和一条共同平面条线来生成并引导电流脉冲进入重金属/铁磁性层堆栈并诱导超快SOT。我们使用磁光探测来研究磁化开关动力学,并分辨率次秒时间分辨率。根据相对电流脉冲和平面磁场极性,我们观察到超快速反应和随后的恢复,以及SOT诱导的预振荡或超快SOT开关。磁化零交叉发生在约70 ps中,大约比以前的研究快大约一个数量级。完全开关需求〜250 ps,并且受热扩散到基板的限制。我们使用宏观磁模拟,再加上超快加热模型来分析观察到的动力学中超快热各向异性扭矩和电流诱导的扭矩的影响。我们的实验结果与宏旋转模型之间的良好一致性表明,开关动力学是连贯的,并且没有明显的孵化延迟。我们的工作提出了一个潜在的途径,可以显着提高SOT磁随机访问记忆设备的写作速度。

Electrically controllable non-volatile magnetic memories show great potential for the replacement of semiconductor-based technologies. Recently there has been strong interest in spin-orbit torque (SOT) induced magnetization reversal due to the device's increased lifetime and speed of operation. However, recent SOT switching studies reveal an incubation delay in the ~ns range due to stochasticity in the nucleation of a magnetic domain during reversal. Here, we experimentally demonstrate ultrafast SOT-induced magnetization switching dynamics of a ferromagnet with no incubation delay by avoiding the nucleation process and driving the magnetization coherently. We employ an ultrafast photo-conducting switch and a co-planar strip line to generate and guide ~ps current pulses into the heavy metal/ferromagnet layer stack and induce ultrafast SOT. We use magneto-optical probing to investigate the magnetization switching dynamics with sub-picosecond time resolution. Depending on the relative current pulse and in-plane magnetic field polarities, we observe either an ultrafast demagnetization and subsequent recovery along with a SOT-induced precessional oscillation, or ultrafast SOT switching. The magnetization zero-crossing occurs in ~70 ps, which is approximately an order of magnitude faster than previous studies. Complete switching needs ~250 ps and is limited by the heat diffusion to the substrate. We use a macro-magnetic simulation coupled with an ultrafast heating model to analyze the effect of ultrafast thermal anisotropy torque and current-induced torque in the observed dynamics. Good agreement between our experimental results and the macro-spin model shows that the switching dynamics are coherent and present no noticeable incubation delay. Our work suggests a potential pathway toward dramatically increasing the writing speed of SOT magnetic random-access memory devices.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源