论文标题

Muonic氢在氢气中的扩散以及1 $ s $超精细分裂的测量

Diffusion of muonic hydrogen in hydrogen gas and the measurement of the 1$s$ hyperfine splitting of muonic hydrogen

论文作者

Nuber, J., Adamczak, A., Ahmed, M. Abdou, Affolter, L., Amaro, F. D., Amaro, P., Carvalho, P., Chang, Y. -H., Chen, T. -L., Chen, W. -L., Fernandes, L. M. P., Ferro, M., Goeldi, D., Graf, T., Guerra, M., Hänsch, T. W., Henriques, C. A. O., Hildebrandt, M., Indelicato, P., Kara, O., Kirch, K., Knecht, A., Kottmann, F., Liu, Y. -W., Machado, J., Marszalek, M., Mano, R. D. P., Monteiro, C. M. B., Nez, F., Ouf, A., Paul, N., Pohl, R., Rapisarda, E., Santos, J. M. F. dos, Santos, J. P., Silva, P. A. O. C., Sinkunaite, L., Shy, J. -T., Schuhmann, K., Rajamohanan, S., Soter, A., Sustelo, L., Taqqu, D., Wang, L. -B., Wauters, F., Yzombard, P., Zeyen, M., Zhang, J., Antognini, A.

论文摘要

Crema的合作是通过脉冲激光光谱法以1 ppm的精度进行了Muonic氢($ $ $ P)中地面高精细分裂(HFS)的测量。在拟议的实验中,$μ$ p ATOM受到从单线到三重精灵超细次级水平的激光脉冲激发,并通过与H $ _2 $分子的无弹性碰撞将其淬灭至单重状态。该周期后的动能的增加会改变氢气中的$ $ $ P原子扩散以及$ $ $ p原子在目标壁上的到达时间。这种激光引起的到达时间的修饰用于暴露原子过渡。在本文中,我们介绍了实验方案核心的H $ _2 $气体中$μ$ P扩散的模拟。这些模拟通过引入各种低能过程,包括h $ _2 $分子的运动,即与氢目标温度相关的效果,从而实现了这些模拟。这些模拟已用于优化氢目标参数(压力,温度和厚度),并估算信号和背景速率。这些速率允许估计找到光谱实验的共振和统计准确性所需的最长时间。

The CREMA collaboration is pursuing a measurement of the ground-state hyperfine splitting (HFS) in muonic hydrogen ($μ$p) with 1 ppm accuracy by means of pulsed laser spectroscopy. In the proposed experiment, the $μ$p atom is excited by a laser pulse from the singlet to the triplet hyperfine sub-levels, and is quenched back to the singlet state by an inelastic collision with a H$_2$ molecule. The resulting increase of kinetic energy after this cycle modifies the $μ$p atom diffusion in the hydrogen gas and the arrival time of the $μ$p atoms at the target walls. This laser-induced modification of the arrival times is used to expose the atomic transition. In this paper we present the simulation of the $μ$p diffusion in the H$_2$ gas which is at the core of the experimental scheme. These simulations have been implemented with the Geant4 framework by introducing various low-energy processes including the motion of the H$_2$ molecules, i.e. the effects related with the hydrogen target temperature. The simulations have been used to optimize the hydrogen target parameters (pressure, temperatures and thickness) and to estimate signal and background rates. These rates allow to estimate the maximum time needed to find the resonance and the statistical accuracy of the spectroscopy experiment.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源