论文标题

粒子格里德:使用材料的3D表示能够深入学习

ParticleGrid: Enabling Deep Learning using 3D Representation of Materials

论文作者

Zaman, Shehtab, Ferguson, Ethan, Pereira, Cecile, Akhiyarov, Denis, Araya-Polo, Mauricio, Chiu, Kenneth

论文摘要

从Alexnet到Inception,自动编码器再到扩散模型,新颖而强大的深度学习模型和学习算法的发展已经以突破性的速度进行。在某种程度上,我们认为,大批研究人员对基础实体的共同表示,对模型架构和学习技术的快速迭代导致了可转移的深度学习知识。结果,在计算机视觉和自然语言处理中,模型量表,准确性,保真度和计算性能已大大增加。另一方面,缺乏化学结构的共同表示已经阻碍了类似的进展。为了实现可转移的深度学习,我们确定了对分子和晶体等材料的强大3维表示的需求。目标是启用材料财产预测和3D结构的产生。虽然计算昂贵,但这些表示形式可以建模大量的化学结构。我们建议$ \ textIt {prentargrid} $,一个用于3D结构的SIMD优化库,该库设计用于深度学习应用程序,并与深度学习框架无缝集成。我们高度优化的网格生成允许在CPU上即时生成网格,从而减少了存储和GPU计算和内存要求。我们显示了通过$ \ textIt {pronesgrid} $生成的3D网格的功效,并使用3D卷积神经网络准确预测了分子能量。我们的模型能够获得0.006均方根误差,并且几乎匹配使用计算昂贵的密度功能理论计算得出的值。

From AlexNet to Inception, autoencoders to diffusion models, the development of novel and powerful deep learning models and learning algorithms has proceeded at breakneck speeds. In part, we believe that rapid iteration of model architecture and learning techniques by a large community of researchers over a common representation of the underlying entities has resulted in transferable deep learning knowledge. As a result, model scale, accuracy, fidelity, and compute performance have dramatically increased in computer vision and natural language processing. On the other hand, the lack of a common representation for chemical structure has hampered similar progress. To enable transferable deep learning, we identify the need for a robust 3-dimensional representation of materials such as molecules and crystals. The goal is to enable both materials property prediction and materials generation with 3D structures. While computationally costly, such representations can model a large set of chemical structures. We propose $\textit{ParticleGrid}$, a SIMD-optimized library for 3D structures, that is designed for deep learning applications and to seamlessly integrate with deep learning frameworks. Our highly optimized grid generation allows for generating grids on the fly on the CPU, reducing storage and GPU compute and memory requirements. We show the efficacy of 3D grids generated via $\textit{ParticleGrid}$ and accurately predict molecular energy properties using a 3D convolutional neural network. Our model is able to get 0.006 mean square error and nearly match the values calculated using computationally costly density functional theory at a fraction of the time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源