论文标题

扩展放射学报告摘要的范围,以多种解剖和方式

Toward expanding the scope of radiology report summarization to multiple anatomies and modalities

论文作者

Chen, Zhihong, Varma, Maya, Wan, Xiang, Langlotz, Curtis, Delbrouck, Jean-Benoit

论文摘要

放射学报告摘要(RRS)是一个不断增长的研究领域。鉴于放射学报告的发现部分,目标是生成一个摘要(称为印象部分),该摘要强调了放射学研究的关键观察和结论。但是,RRS目前面临着基本的局限性。首先,许多先前的研究在私人数据集上进行了实验,从而阻止了不同系统和解决方案之间的结果再现和公平比较。其次,仅在胸部X射线上评估大多数先前的方法。为了解决这些限制,我们提出了一个基于MIMIC-III和MIMIC-CXR数据集的数据集(MIMIC-RRS),涉及三种新模式和七个新解剖。然后,我们进行了广泛的实验,以评估模拟RR中模型内部和跨模态 - 跨模型对的性能。此外,我们通过Radgraph(一种事实正确性度量标准)评估了它们的临床功效。

Radiology report summarization (RRS) is a growing area of research. Given the Findings section of a radiology report, the goal is to generate a summary (called an Impression section) that highlights the key observations and conclusions of the radiology study. However, RRS currently faces essential limitations.First, many prior studies conduct experiments on private datasets, preventing reproduction of results and fair comparisons across different systems and solutions. Second, most prior approaches are evaluated solely on chest X-rays. To address these limitations, we propose a dataset (MIMIC-RRS) involving three new modalities and seven new anatomies based on the MIMIC-III and MIMIC-CXR datasets. We then conduct extensive experiments to evaluate the performance of models both within and across modality-anatomy pairs in MIMIC-RRS. In addition, we evaluate their clinical efficacy via RadGraph, a factual correctness metric.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源