论文标题

通过元探索提供有关互动学生计划的反馈

Giving Feedback on Interactive Student Programs with Meta-Exploration

论文作者

Liu, Evan Zheran, Stephan, Moritz, Nie, Allen, Piech, Chris, Brunskill, Emma, Finn, Chelsea

论文摘要

开发诸如网站或游戏之类的交互式软件是学习计算机科学的一种特别引人入胜的方法。但是,对此类软件的教学和给予反馈是耗时的 - 标准方法需要教师手动对学生实施的互动程序进行分级。结果,在线平台提供数百万美元的在线平台,例如Code.org,无法提供有关实施交互式程序的作业的任何反馈,这严重阻碍了学生的学习能力。一种自动分级的方法是学习与学生计划相互作用的代理,并通过增强学习来探索指示错误的状态。但是,这种方法的现有工作只提供了一个二进制反馈,即一个程序是否正确,而学生则需要对程序中的特定错误进行细粒度的反馈以了解其错误。在这项工作中,我们表明探索发现错误可以作为荟萃探索问题。这使我们能够构建一个有原则的目标,以发现错误和一种优化该目标的算法,从而提供了细粒度的反馈。我们从Code.org交互分配中评估了一组超过700k的匿名学生程序的方法。我们的方法以94.3%的准确性提供了反馈,将现有方法提高了17.7%,并在人类水平准确性的1.5%之内。项目网页:https://ezliu.github.io/dreamgrader。

Developing interactive software, such as websites or games, is a particularly engaging way to learn computer science. However, teaching and giving feedback on such software is time-consuming -- standard approaches require instructors to manually grade student-implemented interactive programs. As a result, online platforms that serve millions, like Code.org, are unable to provide any feedback on assignments for implementing interactive programs, which critically hinders students' ability to learn. One approach toward automatic grading is to learn an agent that interacts with a student's program and explores states indicative of errors via reinforcement learning. However, existing work on this approach only provides binary feedback of whether a program is correct or not, while students require finer-grained feedback on the specific errors in their programs to understand their mistakes. In this work, we show that exploring to discover errors can be cast as a meta-exploration problem. This enables us to construct a principled objective for discovering errors and an algorithm for optimizing this objective, which provides fine-grained feedback. We evaluate our approach on a set of over 700K real anonymized student programs from a Code.org interactive assignment. Our approach provides feedback with 94.3% accuracy, improving over existing approaches by 17.7% and coming within 1.5% of human-level accuracy. Project web page: https://ezliu.github.io/dreamgrader.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源