论文标题

$ \ Mathcal r $ operators的立方块中的自相似性

Self-similarity in cubic blocks of $\mathcal R$-operators

论文作者

Korepanov, Igor G.

论文摘要

从线性运算符$ \ Mathcal r $组装的张张量产品中,研究了立方体块。该操作员与有限特征$ p $的字段$ f $在矢量空间中的线性转换$ a $相关联,例如Hietarinta研究的“置换型”运算符。一个很小的区别是,我们不需要$ a $,因此,$ \ Mathcal r $是可逆的;更重要的是,$ \ Mathcal r $的关系不需要Yang-Baxter或其更高类似物的类型。 结果表明,在$ d = 3 $尺寸中,一个$ p^n \ times p^n \ times p^n $ block分解为类似于初始$ \ Mathcal r $的操作员的张量。对此的一种概括涉及$ f $的交换代数,并允许获得有关由四维$ \ Mathcal r $确定的旋转配置的结果。另一个概括涉及引入旋转配置的Boltzmann权重。事实证明,也存在涉及鲍尔茨曼权重的非平凡的自相似性。

Cubic blocks are studied assembled from linear operators $\mathcal R$ acting in the tensor product of $d$ linear "spin" spaces. Such operator is associated with a linear transformation $A$ in a vector space over a field $F$ of a finite characteristic $p$, like "permutation-type" operators studied by Hietarinta. One small difference is that we do not require $A$ and, consequently, $\mathcal R$ to be invertible; more importantly, no relations on $\mathcal R$ are required of the type of Yang--Baxter or its higher analogues. It is shown that, in $d=3$ dimensions, a $p^n\times p^n\times p^n$ block decomposes into the tensor product of operators similar to the initial $\mathcal R$. One generalization of this involves commutative algebras over $F$ and allows to obtain, in particular, results about spin configurations determined by a four-dimensional $\mathcal R$. Another generalization deals with introducing Boltzmann weights for spin configurations; it turns out that there exists a non-trivial self-similarity involving Boltzmann weights as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源