论文标题

SP数字的代数结果以及概括

Algebraic Results on SP Numbers along with a generalization

论文作者

Bhat, Raghavendra N., Madhusudanan, Sundarraman

论文摘要

我们将表格$ p \ cdot a^2 $定义为SP数字(Square-Prime数字)($ a \ neq1 $,$ p $ prime)在纸上的“平方平方数字”(Arxiv:2109.10238)中以及分布的证明。 SP数字的一些示例:75 = 3 $ \ CDOT $ 25; 108 = 3 $ \ cdot $ 36; 45 = 5 $ \ cdot $ 9。这些数字在OEIS中列为A228056。在本文中,我们将证明一些代数定理并概括了SP数字的定义,以允许任意自然数量的因素。

We defined numbers of the form $p\cdot a^2$ as SP numbers (Square-Prime numbers) ($a\neq1$, $p$ prime) in the paper 'Distribution of Square-Prime numbers' (arXiv:2109.10238) along with proofs on their distribution. Some examples of SP Numbers : 75 = 3 $\cdot$ 25; 108 = 3 $\cdot$ 36; 45 = 5 $\cdot$ 9. These numbers are listed in the OEIS as A228056. In this paper, we will prove a few algebraic theorems and generalize the definition of SP Numbers to allow factors of arbitrary natural number powers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源