论文标题

强大的骨干符合强大的功能 - EGO4D时刻查询挑战的动作形式

Where a Strong Backbone Meets Strong Features -- ActionFormer for Ego4D Moment Queries Challenge

论文作者

Mu, Fangzhou, Mo, Sicheng, Wang, Gillian, Li, Yin

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

This report describes our submission to the Ego4D Moment Queries Challenge 2022. Our submission builds on ActionFormer, the state-of-the-art backbone for temporal action localization, and a trio of strong video features from SlowFast, Omnivore and EgoVLP. Our solution is ranked 2nd on the public leaderboard with 21.76% average mAP on the test set, which is nearly three times higher than the official baseline. Further, we obtain 42.54% Recall@1x at tIoU=0.5 on the test set, outperforming the top-ranked solution by a significant margin of 1.41 absolute percentage points. Our code is available at https://github.com/happyharrycn/actionformer_release.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源