论文标题

全天空cmb $ \ bf {e} $和$ \ bf {b} $模式的重建

Reconstruction of full sky CMB $\bf{E}$ and $\bf{B}$ modes spectra removing $\bf{E}$-to-$\bf{B}$ leakage from partial sky using deep learning

论文作者

Pal, Srikanta, Saha, Rajib

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Incomplete sky analysis of cosmic microwave background (CMB) polarization spectra poses a major problem of leakage between $E$- and $B$-modes. We present a machine learning approach to remove this $E$-to-$B$ leakage using a convolutional neural network (CNN) in presence of detector noise. The CNN predicts the full sky $E$- and $B$-modes spectra for multipoles $2 \leq \ell \leq 384$ from the partial sky spectra for $N_{\rm{side}} = 256$. We use tensor-to-scalar ratio $r=0.001$ to simulate the CMB polarization maps. We train our CNN using $10^5$ full sky target spectra and an equal number of noise contaminated partial sky spectra obtained from the simulated maps. The CNN works well for two masks covering the sky area of $\sim 80\%$ and $\sim 10\%$ respectively after training separately for each mask. For the assumed theoretical $E$- and $B$-modes spectra, predicted full sky $E$- and $B$-modes spectra agree well with the corresponding target spectra and their means agree with theoretical spectra. The CNN preserves the cosmic variances at each multipole, effectively removes correlations of the partial sky $E$- and $B$-modes spectra, and retains the entire statistical properties of the targets avoiding the problem of so-called $E$-to-$B$ leakage for the chosen theoretical model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源