论文标题
部分可观测时空混沌系统的无模型预测
Quantized charge polarization as a many-body invariant in (2+1)D crystalline topological states and Hofstadter butterflies
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We show how to define a quantized many-body charge polarization $\vec{\mathscr{P}}$ for (2+1)D topological phases of matter, even in the presence of non-zero Chern number and magnetic field. For invertible topological states, $\vec{\mathscr{P}}$ is a $\mathbb{Z}_2 \times \mathbb{Z}_2$, $\mathbb{Z}_3$, $\mathbb{Z}_2$, or $\mathbb{Z}_1$ topological invariant in the presence of $M = 2$, $3$, $4$, or $6$-fold rotational symmetry, lattice (magnetic) translational symmetry, and charge conservation. $\vec{\mathscr{P}}$ manifests in the bulk of the system as (i) a fractional quantized contribution of $\vec{\mathscr{P}} \cdot \vec{b} \text{ mod 1}$ to the charge bound to lattice disclinations and dislocations with Burgers vector $\vec{b}$, (ii) a linear momentum for magnetic flux, and (iii) an oscillatory system size dependent contribution to the effective 1d polarization on a cylinder. We study $\vec{\mathscr{P}}$ in lattice models of spinless free fermions in a magnetic field. We derive predictions from topological field theory, which we match to numerical calculations for the effects (i)-(iii), demonstrating that these can be used to extract $\vec{\mathscr{P}}$ from microscopic models in an intrinsically many-body way. We show how, given a high symmetry point $\text{o}$, there is a topological invariant, the discrete shift $\mathscr{S}_{\text{o}}$, such that $\vec{\mathscr{P}}$ specifies the dependence of $\mathscr{S}_{\text{o}}$ on $\text{o}$. We derive colored Hofstadter butterflies, corresponding to the quantized value of $\vec{\mathscr{P}}$, which further refine the colored butterflies from the Chern number and discrete shift.