论文标题
鸟类的视图:从列表级别到页面级别
A Bird's-eye View of Reranking: from List Level to Page Level
论文作者
论文摘要
作为多阶段推荐系统的最后阶段,RERANKing完善了初始列表,以最大程度地提高总实用程序。随着多媒体和用户界面设计的开发,推荐页面已演变为多列表样式。单独采用传统的列表级重新依克方法来列出不同列表,可忽略列表中的交互和不同页面格式的效果,从而产生次优的重新依据性能。此外,仅将共享网络应用于所有列表都无法捕获不同列表上用户行为的共同点和区分。为此,我们建议绘制\ textbf {page-level reranking}的鸟眼视图,并设计一种新颖的页面级别的注意重新播放(PAR)模型。我们引入了分层双侧注意模块,以提取个性化的内部和列表间相互作用。设计了一个空间标准的注意网络,以将空间关系整合到成对项目的影响中,该影响明确地对页面格式进行了建模。进一步的多门控件模块进一步应用,以捕获不同列表之间用户行为的共同点和差异。在公共数据集和专有数据集上进行的广泛实验表明,这显着胜过现有的基线模型。
Reranking, as the final stage of multi-stage recommender systems, refines the initial lists to maximize the total utility. With the development of multimedia and user interface design, the recommendation page has evolved to a multi-list style. Separately employing traditional list-level reranking methods for different lists overlooks the inter-list interactions and the effect of different page formats, thus yielding suboptimal reranking performance. Moreover, simply applying a shared network for all the lists fails to capture the commonalities and distinctions in user behaviors on different lists. To this end, we propose to draw a bird's-eye view of \textbf{page-level reranking} and design a novel Page-level Attentional Reranking (PAR) model. We introduce a hierarchical dual-side attention module to extract personalized intra- and inter-list interactions. A spatial-scaled attention network is devised to integrate the spatial relationship into pairwise item influences, which explicitly models the page format. The multi-gated mixture-of-experts module is further applied to capture the commonalities and differences of user behaviors between different lists. Extensive experiments on a public dataset and a proprietary dataset show that PAR significantly outperforms existing baseline models.