论文标题

部分可观测时空混沌系统的无模型预测

Outracing Human Racers with Model-based Planning and Control for Time-trial Racing

论文作者

Hao, Ce, Tang, Chen, Bergkvist, Eric, Weaver, Catherine, Sun, Liting, Zhan, Wei, Tomizuka, Masayoshi

论文摘要

近年来,自主赛车已成为自动驾驶的流行亚主题。自主赛车研究的目的是开发软件,以控制车辆的限制并实现人级赛车性能。在这项工作中,我们研究了如何使用高保真赛车模拟器Gran Turismo Sport(GTS)来通过基于模型的计划和控制方法来处理人类专家级别的赛车绩效。 GTS为自主赛车研究带来了独特的机会,因为来自高技能人类玩家的许多赛车录音都可以作为专家的启示。通过将自主赛车软件的性能与人类专家进行比较,我们可以更好地了解现有软件的性能差距,并以原则上的方式探索新方法。特别是,我们专注于通常采用的基于模型的赛车框架,包括离线轨迹规划师和基于在线模型的基于预测控制的(MPC)跟踪控制器。我们从三个角度(即车辆模型,计划算法和控制器设计)彻底调查了设计挑战,并提出了新的解决方案,以改善针对人类专家级别性能的基线方法。我们表明,所提出的控制框架可以在GTS中的人类专家中达到最高的0.95%的圈速时间。此外,我们进行了全面的消融研究,以验证提议的模块的必要性,并指出了未来的未来方向以达到人为最佳的表现。

Autonomous racing has become a popular sub-topic of autonomous driving in recent years. The goal of autonomous racing research is to develop software to control the vehicle at its limit of handling and achieve human-level racing performance. In this work, we investigate how to approach human expert-level racing performance with model-based planning and control methods using the high-fidelity racing simulator Gran Turismo Sport (GTS). GTS enables a unique opportunity for autonomous racing research, as many recordings of racing from highly skilled human players can served as expert emonstrations. By comparing the performance of the autonomous racing software with human experts, we better understand the performance gap of existing software and explore new methodologies in a principled manner. In particular, we focus on the commonly adopted model-based racing framework, consisting of an offline trajectory planner and an online Model Predictive Control-based (MPC) tracking controller. We thoroughly investigate the design challenges from three perspective, namely vehicle model, planning algorithm, and controller design, and propose novel solutions to improve the baseline approach toward human expert-level performance. We showed that the proposed control framework can achieve top 0.95% lap time among human-expert players in GTS. Furthermore, we conducted comprehensive ablation studies to validate the necessity of proposed modules, and pointed out potential future directions to reach human-best performance.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源