论文标题
PMWD:可区分的宇宙粒子网$ n $ - 体库
pmwd: A Differentiable Cosmological Particle-Mesh $N$-body Library
论文作者
论文摘要
大规模结构的形成,星系,类星体和宇宙学量表的暗物质的演变和分布需要数值模拟。可区分的模拟提供了宇宙学参数的梯度,可以加速从观察数据的统计分析中提取物理信息。深度学习革命不仅带来了无数强大的神经网络,还带来了包括自动分化(AD)工具和计算加速器等突破性的突破性,从而通过可区分的模拟促进了宇宙的前向建模。因为AD需要保存整个前向演变历史记录以使梯度反向流向梯度,所以当前可区分的宇宙学模拟受内存的限制。使用伴随方法,通过反向时间积分来重建演化历史,我们开发了一个可区分的宇宙学粒子网(PM)仿真库PMWD(带衍生物的粒子网),其存储器成本较低。基于功能强大的AD库JAX,PMWD完全可区分,并且在GPU上具有高度性能。
The formation of the large-scale structure, the evolution and distribution of galaxies, quasars, and dark matter on cosmological scales, requires numerical simulations. Differentiable simulations provide gradients of the cosmological parameters, that can accelerate the extraction of physical information from statistical analyses of observational data. The deep learning revolution has brought not only myriad powerful neural networks, but also breakthroughs including automatic differentiation (AD) tools and computational accelerators like GPUs, facilitating forward modeling of the Universe with differentiable simulations. Because AD needs to save the whole forward evolution history to backpropagate gradients, current differentiable cosmological simulations are limited by memory. Using the adjoint method, with reverse time integration to reconstruct the evolution history, we develop a differentiable cosmological particle-mesh (PM) simulation library pmwd (particle-mesh with derivatives) with a low memory cost. Based on the powerful AD library JAX, pmwd is fully differentiable, and is highly performant on GPUs.