论文标题
Carma-Nro Orion调查:猎户座中密集核心和核心质量功能的无偏调查
CARMA-NRO Orion Survey: unbiased survey of dense cores and core mass functions in Orion A
论文作者
论文摘要
密集核的质量分布是了解恒星形成过程的潜在关键。将树状图分析应用于Carma-Nro Orion C $^{18} $ O($ J $ = 1--0)数据,我们识别2342个密度的核心,其中约22 \%的病毒比小于2,并且可以分类为重力绑定的核心。与原恒星不相关的绑定无星核的派生核心质量函数(CMF)的斜率与Salpeter的初始质量函数(IMF)相似,质量范围高于1 $ m_ \ odot $,峰值为$ \ sim $ 0.1 $ 0.1 $ m_ \ odot $。我们将云根据偏差分为四个部分,即OMC-1/2/3,OMC-4/5,L1641N/V380 ORI和L1641C,并在这些区域中得出CMF。我们发现,质量大于10 $ m_ \ odot $的无星核仅在OMC-1/2/3中存在,而OMC-4/5,L1641N和L1641C中的CMF在5--10 $ M_ \ odot $左右被截断。从每个子区域中的无恒星核心和II类对象的数量比,据估计,无恒星核的寿命为5--30次自由下落时间,与以前对其他地区的研究一致。此外,我们通过周围云材料的质量积聚来讨论核心的生长,以解释IMF和CMF之间峰值质量的巧合。在核心寿命内加倍核心质量所需的质量积聚率大于邦迪 - 霍伊尔积聚的质量量,这意味着要增加核心需要更动力学的吸积过程。
The mass distribution of dense cores is a potential key to understand the process of star formation. Applying dendrogram analysis to the CARMA-NRO Orion C$^{18}$O ($J$=1--0) data, we identify 2342 dense cores, about 22 \% of which have virial ratios smaller than 2, and can be classified as gravitationally bound cores. The derived core mass function (CMF) for bound starless cores which are not associate with protostars has a slope similar to Salpeter's initial mass function (IMF) for the mass range above 1 $M_\odot$, with a peak at $\sim$ 0.1 $M_\odot$. We divide the cloud into four parts based on the declination, OMC-1/2/3, OMC-4/5, L1641N/V380 Ori, and L1641C, and derive the CMFs in these regions. We find that starless cores with masses greater than 10 $M_\odot$ exist only in OMC-1/2/3, whereas the CMFs in OMC-4/5, L1641N, and L1641C are truncated at around 5--10 $M_\odot$. From the number ratio of bound starless cores and Class II objects in each subregion, the lifetime of bound starless cores is estimated to be 5--30 free-fall times, consistent with previous studies for other regions. In addition, we discuss core growth by mass accretion from the surrounding cloud material to explain the coincidence of peak masses between IMFs and CMFs. The mass accretion rate required for doubling the core mass within a core lifetime is larger than that of Bondi-Hoyle accretion by a factor of order 2. This implies that more dynamical accretion processes are required to grow cores.