论文标题
使用多个传输信息来源的灵活且可扩展的单层框架,用于OD矩阵推断
A flexible and scalable single-level framework for OD matrix inference using multiple sources of transport information
论文作者
论文摘要
这项研究提出了使用物联网(物联网)和其他来源的数据推理的灵活且可扩展的单级框架,用于原点用途矩阵(ODM)推理。该框架允许分析师整合来自多个数据源的信息,同时控制跨源数据质量的差异。我们通过在澳大利亚大阿德莱德(GA)的现实世界实验来评估框架的有效性。我们使用四个单独的数据源来推断该区域内的汽车OD流量:循环探测器的站点级交通计数,路边蓝牙传感器记录的车辆轨迹,基于车辆内导航系统的数据的部分OD流以及澳大利亚人口普查收集的工作之旅数据。我们将OD推断与当前版本的阿德莱德战略运输模型(MASTEM)的推论进行了比较,该模型使用传统的家庭旅行调查进行了校准。尽管输入数据和方法差异,我们发现我们的推论与Mastem的推论之间存在显着的一致性。例如,在早晨的高峰期,我们预测GA内进行的旅行总数等于556,000,而Mastem的相应预测等于484,000。这两个预测彼此之间的20%以内。当我们比较旅行的空间分布时,就起源和目的地而言,我们发现我们所推论的OD矩阵与相应的Mastem矩阵具有86%的余弦相似性。总而言之,我们的结果表明,所提出的框架可以与传统的基于家庭旅行调查的传统运输需求建模方法相比,产生高度可比的ODM,旅行生产和旅行吸引模式。
This study proposes a flexible and scalable single-level framework for origin-destination matrix (ODM) inference using data from IoT (Internet of Things) and other sources. The framework allows the analyst to integrate information from multiple data sources, while controlling for differences in data quality across sources. We assess the effectiveness of the framework through a real-world experiment in Greater Adelaide (GA), Australia. We infer car OD flows within the region using four separate data sources: site-level traffic counts from loop detectors, vehicle trajectories recorded by roadside Bluetooth sensors, partial OD flows based on data from in-vehicle navigation systems, and journey-to-work data collected by the Australian Census. We compare our OD inferences with those from the current version of the Metropolitan Adelaide Strategic Transport Model (MASTEM), calibrated using data from traditional household travel surveys. We find remarkable consistency between our inferences and those from MASTEM, despite differences in input data and methodologies. For example, for the morning peak period, we predict the total number of trips made within GA to be equal to 556,000, while the corresponding prediction from MASTEM is equal to 484,000. The two predictions are within 20 per cent of each other. When we compare the spatial distribution of trips, in terms of origins and destinations, we find that our inferred OD matrix has an 86 per cent cosine similarity to the corresponding MASTEM matrix. In summary, our results show that the proposed framework can produce highly comparable ODM, trip production and trip attraction patterns to those inferred from traditional household travel survey-based transportation demand modelling methods.