论文标题

较高属曲线上的可解决点

Solvable points on higher genus curves

论文作者

Rawson, James

论文摘要

众所周知,对于在$ \ mathbb {q} $上定义的曲线,$ g \ leq 4 $的曲线,在$ \ mathbb {q} $的可溶解扩展上定义的曲线上存在一个点。我们将可溶剂扩展的属性曲线上的点与Bombieri-lang猜想相关联。具体而言,它表明,用固定的可溶解GALOIS组在扩展上定义的品种参数化点是一般类型的。此外,我们在这些品种中表明了某些亚变量的存在,暗示着曲线可解决的形态。

It is known that for a curve defined over $\mathbb{Q}$ of genus $g \leq 4$, there exists a point on the curve defined over a solvable extension of $\mathbb{Q}$. We relate points on curves of genus $g \geq 5$ over solvable extensions to the Bombieri-Lang conjecture. Specifically, it shows that varieties parameterising points defined over extensions with a fixed solvable Galois group are of general type. Moreover, we show the existence of certain subvarieties in these varieties imply the existence of solvable morphisms from the curve.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源