论文标题
使用生成对抗网络加速了耦合相位问题的解决方案
Accelerated Solutions of Coupled Phase-Field Problems using Generative Adversarial Networks
论文作者
论文摘要
多物理问题,例如多组分扩散,多相系统中的相变和合金固化涉及非线性偏微分方程(PDE)耦合系统的数值解。使用基于网格的方法的这些PDE的数值解需要这些方程式的时空离散化。因此,数值解决方案通常对离散参数敏感,并且可能具有不准确性(是由基于网格的近似值导致的)。此外,选择更高精度的较优质网格使这些方法在计算上昂贵。基于神经网络的PDE求解器正在成为常规数值方法的鲁棒替代品,因为这些方法使用了无网格,不依赖网格,快速和准确的机器可学习结构。但是,基于神经网络的求解器需要大量的培训数据,从而影响其概括和可扩展性。对于时间依赖性PDE的耦合系统,这些担忧变得更加敏锐。为了解决这些问题,我们开发了一个新的基于神经网络的框架,该框架使用基于convlstm层的基于编码的条件生成对抗网络来求解Cahn-Hilliard方程的系统。这些方程式在三相混乱的间隙内淬灭时,三元合金的微观结构演变。我们表明,训练有素的模型是网状和与比例无关的,因此保证将应用作为有效的神经操作员。
Multiphysics problems such as multicomponent diffusion, phase transformations in multiphase systems and alloy solidification involve numerical solution of a coupled system of nonlinear partial differential equations (PDEs). Numerical solutions of these PDEs using mesh-based methods require spatiotemporal discretization of these equations. Hence, the numerical solutions are often sensitive to discretization parameters and may have inaccuracies (resulting from grid-based approximations). Moreover, choice of finer mesh for higher accuracy make these methods computationally expensive. Neural network-based PDE solvers are emerging as robust alternatives to conventional numerical methods because these use machine learnable structures that are grid-independent, fast and accurate. However, neural network based solvers require large amount of training data, thus affecting their generalizabilty and scalability. These concerns become more acute for coupled systems of time-dependent PDEs. To address these issues, we develop a new neural network based framework that uses encoder-decoder based conditional Generative Adversarial Networks with ConvLSTM layers to solve a system of Cahn-Hilliard equations. These equations govern microstructural evolution of a ternary alloy undergoing spinodal decomposition when quenched inside a three-phase miscibility gap. We show that the trained models are mesh and scale-independent, thereby warranting application as effective neural operators.