论文标题

多分散硬球体的运输特性:分布形状和质量缩放的影响

Transport properties of polydisperse hard sphere fluid: Effect of distribution shape and mass scaling

论文作者

Meitei, Thokchom Premkumar, Shagolsem, Lenin S.

论文摘要

模型多分散流体代表许多实际流体,例如胶体悬浮液和聚合物溶液。在这项研究中,考虑到具有从两个不同分布函数的尺寸的浓缩大小分散的硬球体,即均匀,均匀和高斯,并探索多分散性和质量缩放对传输特性的影响。还提供了基于玻尔兹曼传输方程的简单分析解决方案(与使用Chapman-Enskog(CE)方法的解决方案一起使用,使用了各种传输系数。我们方法的核心思想是意识到,在多分散系统中,碰撞散射横截面与随机变量\ textit \ textit {z}的比例等于两个随机变量$σ_i$和$σ_j$和$σ_j$的总和(代表粒子),并且可以作为\ textit = neworta {z}的分布{z; $ P(σ_J)$。获得的传输系数表示为多分散指数,$δ$的明确函数,并探索了它们对粒度分布性质的依赖性。可以观察到,在低多分散性极限中,发现传输系数对所考虑的尺寸分布函数的类型不敏感。使用Chapman-Enskog方法获得的分析结果(对于扩散系数和导热率)和我们的简单分析方法与模拟非常吻合。但是,对于剪切粘度,我们的分析方法以$δ\ le 20 \%$的速度进行处理,而它同意了$δ\%\%$ $,而使用CE-method获得的结果(在限制$δ\ rightarrow 0 $中)。有趣的是,缩放质量的效果(即与粒度成比例的质量和随机变量成正比)不会产生明显的定性差异。

A model polydisperse fluid represents many real fluids such as colloidal suspensions and polymer solutions. In this study, considering a concentrated size-polydisperse hard sphere fluid with size derived from two different distribution functions, namely, uniform and Gaussian and explore the effect of polydispersity and mass scaling on the transport properties in general. A simple analytical solution based on the Boltzmann transport equation is also presented (together with the solution using Chapman-Enskog (CE) method) using which various transport coefficients are obtained. The central idea of our approach is the realization that, in polydisperse system, the collision scattering cross section is proportional to a random variable \textit{z} which is equal to the sum of two random variables $σ_i$ and $σ_j$ (representing particle diameters), and the distribution of \textit{z} can be written as the convolution of the two distributions $P(σ_i)$ and $P(σ_j)$. The obtained transport coefficients are expressed as explicit function of polydispersity index, $δ$, and their dependence on the nature of particle size distribution is explored. It is observed that in the low polydispersity limit, the transport coefficients are found to be insensitive to the type of size distribution functions considered. The analytical results (for diffusion coefficients and thermal conductivity) obtained using Chapman-Enskog method and our simple analytical approach agrees well with the simulation. However, for shear viscosity, our analyical approach agress for $δ\le 20\%$, while it agrees upto $δ\approx 40\%$ with the result obtained using CE-method (in the limit $δ\rightarrow 0$). Interestingly, the effect of scaling mass (i.e., mass proportional to the particle size and thus a random variable) produces no significant qualitative difference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源