论文标题

部分可观测时空混沌系统的无模型预测

Unbiased Knowledge Distillation for Recommendation

论文作者

Chen, Gang, Chen, Jiawei, Feng, Fuli, Zhou, Sheng, He, Xiangnan

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

As a promising solution for model compression, knowledge distillation (KD) has been applied in recommender systems (RS) to reduce inference latency. Traditional solutions first train a full teacher model from the training data, and then transfer its knowledge (\ie \textit{soft labels}) to supervise the learning of a compact student model. However, we find such a standard distillation paradigm would incur serious bias issue -- popular items are more heavily recommended after the distillation. This effect prevents the student model from making accurate and fair recommendations, decreasing the effectiveness of RS. In this work, we identify the origin of the bias in KD -- it roots in the biased soft labels from the teacher, and is further propagated and intensified during the distillation. To rectify this, we propose a new KD method with a stratified distillation strategy. It first partitions items into multiple groups according to their popularity, and then extracts the ranking knowledge within each group to supervise the learning of the student. Our method is simple and teacher-agnostic -- it works on distillation stage without affecting the training of the teacher model. We conduct extensive theoretical and empirical studies to validate the effectiveness of our proposal. We release our code at: https://github.com/chengang95/UnKD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源