论文标题
部分可观测时空混沌系统的无模型预测
Exponential mixing of frame flows for convex cocompact locally symmetric spaces
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Let $G$ be a connected center-free simple real algebraic group of rank one and $Γ< G$ be a Zariski dense torsion-free convex cocompact subgroup. We prove that the frame flow on $Γ\backslash G$, i.e., the right translation action of a one-parameter subgroup $\{a_t\}_{t \in \mathbb R} < G$ of semisimple elements, is exponentially mixing with respect to the Bowen-Margulis-Sullivan measure. The key step is proving suitable generalizations of the local non-integrability condition and the non-concentration property which are essential for Dolgopyat's method. This generalizes the work of Sarkar-Winter for $G = \operatorname{SO}(n, 1)^\circ$ and also strengthens the mixing result of Winter in the convex cocompact case.