论文标题

部分可观测时空混沌系统的无模型预测

Asymptotic profiles for a nonlinear Kirchhoff equation with combined powers nonlinearity

论文作者

Ma, Shiwang, Moroz, Vitaly

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We study asymptotic behavior of positive ground state solutions of the nonlinear Kirchhoff equation $$ -\Big(a+b\int_{\mathbb R^N}|\nabla u|^2\Big)Δu+ λu= u^{q-1}+ u^{p-1} \quad {\rm in} \ \mathbb R^N, $$ as $λ\to 0$ and $λ\to +\infty$, where $N=3$ or $N= 4$, $2<q\le p\le 2^*$, $2^*=\frac{2N}{N-2}$ is the Sobolev critical exponent, $a>0$, $b\ge 0$ are constants and $λ>0$ is a parameter. In particular, we prove that in the case $2<q<p=2^*$, as $λ\to 0$, after a suitable rescaling the ground state solutions of the problem converge to the unique positive solution of the equation $-Δu+u=u^{q-1}$ and as $λ\to +\infty$, after another rescaling the ground state solutions of the problem converge to a particular solution of the critical Emden-Fowler equation $-Δu=u^{2^*-1}$. We establish a sharp asymptotic characterisation of such rescalings, which depends in a non-trivial way on the space dimension $N=3$ and $N= 4$. We also discuss a connection of our results with a mass constrained problem associated to the Kirchhoff equation with the mass normalization constraint $\int_{\mathbb R^N}|u|^2=c^2$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源