论文标题

完全随机的信任区域顺序二次编程,用于相等约束优化问题

Fully Stochastic Trust-Region Sequential Quadratic Programming for Equality-Constrained Optimization Problems

论文作者

Fang, Yuchen, Na, Sen, Mahoney, Michael W., Kolar, Mladen

论文摘要

我们提出了一个信任区域随机顺序二次编程算法(TR-STOSQP),以解决具有随机目标和确定性平等约束的非线性优化问题。我们考虑一个完全随机的环境,在每个步骤中,都会生成单个样本以估计客观梯度。该算法适应地选择了信任区域半径,与现有的线路搜索STOSQP方案相比,我们可以在SQP亚问题中利用无限的Hessian矩阵(即没有修改的Hessian)。作为用于约束优化的信任区域方法,我们的算法必须解决一个不可行的问题 - 线性化的平等约束和信任区域约束可能会导致不可行的SQP子问题。在这方面,我们提出了一种自适应松弛技术来计算试验步骤,包括正常步骤和切线步骤。为了控制这两个步骤的长度,同时确保了规模不变的属性,我们根据重新固定的可行性和最佳残留物的比例,将信任区域半径分为两个部分,分为两个部分。正常的步骤具有封闭形式,而切向步骤是通过解决信任区的子问题获得的,该解决方案确保了凯基(Cauchy)的减少足以满足我们的研究。我们为TR-STOSQP建立了全局几乎确定的收敛保证,并使用LIBSVM Collection的数据来说明其在最可爱的测试集和约束逻辑回归问题的一部分上的经验性能。

We propose a trust-region stochastic sequential quadratic programming algorithm (TR-StoSQP) to solve nonlinear optimization problems with stochastic objectives and deterministic equality constraints. We consider a fully stochastic setting, where at each step a single sample is generated to estimate the objective gradient. The algorithm adaptively selects the trust-region radius and, compared to the existing line-search StoSQP schemes, allows us to utilize indefinite Hessian matrices (i.e., Hessians without modification) in SQP subproblems. As a trust-region method for constrained optimization, our algorithm must address an infeasibility issue -- the linearized equality constraints and trust-region constraints may lead to infeasible SQP subproblems. In this regard, we propose an adaptive relaxation technique to compute the trial step, consisting of a normal step and a tangential step. To control the lengths of these two steps while ensuring a scale-invariant property, we adaptively decompose the trust-region radius into two segments, based on the proportions of the rescaled feasibility and optimality residuals to the rescaled full KKT residual. The normal step has a closed form, while the tangential step is obtained by solving a trust-region subproblem, to which a solution ensuring the Cauchy reduction is sufficient for our study. We establish a global almost sure convergence guarantee for TR-StoSQP, and illustrate its empirical performance on both a subset of problems in the CUTEst test set and constrained logistic regression problems using data from the LIBSVM collection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源