论文标题
学习用于滚动$μ$ bot的跟踪控制器
Learning a Tracking Controller for Rolling $μ$bots
论文作者
论文摘要
微米级机器人($μ$机器人)最近在新兴的医疗应用方面表现出了巨大的希望。准确控制$μ$机器人,尽管对他们成功部署至关重要,但却是具有挑战性的。在这项工作中,我们考虑了在存在干扰和不确定性的情况下使用$μ$ bot跟踪参考轨迹的问题。这些干扰主要来自布朗运动和其他环境现象,而不确定性则来自模型参数中的错误。我们将$μ$ bot建模为由全球磁场控制的不确定的独轮车。为了弥补干扰和不确定性,我们开发了一个非线性不匹配控制器。我们将模型不匹配误差定义为模型的预测速度与$μ$ bot的实际速度之间的差异。我们采用高斯过程来学习模型不匹配误差,这是应用控制输入的函数。然后,我们使用最小二乘最小化来选择一个控制动作,以最大程度地减少$μ$ bot的实际速度与参考速度之间的差异。我们在模拟中展示了联合学习和控制算法的在线性能,我们的方法准确地学习了模型不匹配并改善了跟踪性能。我们还在实验中验证了我们的方法,并表明某些错误指标的降低到$ 40 \%$。
Micron-scale robots ($μ$bots) have recently shown great promise for emerging medical applications. Accurate controlling $μ$bots, while critical to their successful deployment, is challenging. In this work, we consider the problem of tracking a reference trajectory using a $μ$bot in the presence of disturbances and uncertainty. The disturbances primarily come from Brownian motion and other environmental phenomena, while the uncertainty originates from errors in the model parameters. We model the $μ$bot as an uncertain unicycle that is controlled by a global magnetic field. To compensate for disturbances and uncertainties, we develop a nonlinear mismatch controller. We define the model mismatch error as the difference between our model's predicted velocity and the actual velocity of the $μ$bot. We employ a Gaussian Process to learn the model mismatch error as a function of the applied control input. Then we use a least-squares minimization to select a control action that minimizes the difference between the actual velocity of the $μ$bot and a reference velocity. We demonstrate the online performance of our joint learning and control algorithm in simulation, where our approach accurately learns the model mismatch and improves tracking performance. We also validate our approach in an experiment and show that certain error metrics are reduced by up to $40\%$.