论文标题
概括和改善雅各布和黑森西亚正规化
Generalizing and Improving Jacobian and Hessian Regularization
论文作者
论文摘要
Jacobian和Hessian正则化旨在减少相对于神经网络输入的一阶部分和二阶衍生物的幅度,并且主要用于确保图像分类器的对抗性鲁棒性。在这项工作中,我们通过将目标矩阵从零扩展到接受有效矩阵矢量产物的任何矩阵来概括了先前的工作。所提出的范式使我们能够构建新颖的正则化术语,该术语在方形雅各布和黑森州矩阵上强制对称性或对角线。另一方面,雅各布和黑森州正则化的主要挑战是计算复杂性很高。我们介绍了基于兰开斯的光谱规范最小化以应对这一困难。该技术采用了兰开斯算法的并行实现,并且能够有效且稳定的大型雅各布和黑森州矩阵的正规化。为拟议的范式和技术提供了理论上的理由和经验证据。我们进行探索性实验,以验证新型正则化项的有效性。我们还进行了比较实验,以评估基于兰氏的光谱规范最小化对先前方法的最小化。结果表明,所提出的方法对于各种任务都是有利的。
Jacobian and Hessian regularization aim to reduce the magnitude of the first and second-order partial derivatives with respect to neural network inputs, and they are predominantly used to ensure the adversarial robustness of image classifiers. In this work, we generalize previous efforts by extending the target matrix from zero to any matrix that admits efficient matrix-vector products. The proposed paradigm allows us to construct novel regularization terms that enforce symmetry or diagonality on square Jacobian and Hessian matrices. On the other hand, the major challenge for Jacobian and Hessian regularization has been high computational complexity. We introduce Lanczos-based spectral norm minimization to tackle this difficulty. This technique uses a parallelized implementation of the Lanczos algorithm and is capable of effective and stable regularization of large Jacobian and Hessian matrices. Theoretical justifications and empirical evidence are provided for the proposed paradigm and technique. We carry out exploratory experiments to validate the effectiveness of our novel regularization terms. We also conduct comparative experiments to evaluate Lanczos-based spectral norm minimization against prior methods. Results show that the proposed methodologies are advantageous for a wide range of tasks.