论文标题

了解远程物理课程中教学环境之间跨教学环境的相互作用网络形成

Understanding interaction network formation across instructional contexts in remote physics courses

论文作者

Sundstrom, Meagan, Schang, Andy, Heim, Ashley B., Holmes, N. G.

论文摘要

与同龄人进行互动对于学生学习很重要。许多研究都使用社交网络分析量化了在面对面物理课程中的学生互动模式,在教学环境(讲座和实验室)和样式(主动和传统)之间找到不同的网络结构。此类研究还发现,关于学生级变量(例如成绩和人口统计学)是否以及与相互作用网络的形成有关的结果不一致。在这项横断面研究中,我们通过在四种不同的远程物理课程中检查讲座和实验室互动网络,进一步研究这些关系,这些远程物理课程涵盖各种教学方式和学生群体。我们应用社交网络分析(指数随机图模型)的统计方法来衡量网络形成与多个变量之间的关系:学生的讨论和实验室部分入学,最终课程成绩,性别和种族/种族/种族/种族。与以前对面对面课程的研究相似,我们发现远程演讲交互网络包含大量群集连接许多学生,而远程实验室互动网络则包含少数学生的较小群集。我们的统计分析表明,这些不同的网络结构是由教学级别和学生级别变量的组合,包括每个教学环境的学习目标,分配分组或单独完成,性别的分布以及分布的学生以及参加课程的学生。我们进一步讨论这些变量如何有助于了解远程和面对面物理课程中相互作用网络的形成。

Engaging in interactions with peers is important for student learning. Many studies have quantified patterns of student interactions in in-person physics courses using social network analysis, finding different network structures between instructional contexts (lecture and lab) and styles (active and traditional). Such studies also find inconsistent results as to whether and how student-level variables (e.g., grades and demographics) relate to the formation of interaction networks. In this cross-sectional research study, we investigate these relationships further by examining lecture and lab interaction networks in four different remote physics courses spanning various instructional styles and student populations. We apply statistical methods from social network analysis -- exponential random graph models -- to measure the relationship between network formation and multiple variables: students' discussion and lab section enrollment, final course grades, gender, and race/ethnicity. Similar to previous studies of in-person courses, we find that remote lecture interaction networks contain large clusters connecting many students, while remote lab interaction networks contain smaller clusters of a few students. Our statistical analysis suggests that these distinct network structures arise from a combination of both instruction-level and student-level variables, including the learning goals of each instructional context, whether assignments are completed in groups or individually, and the distribution of gender and major of students enrolled in a course. We further discuss how these and other variables help to understand the formation of interaction networks in both remote and in-person physics courses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源