论文标题
$φ(km^{a})/φ(ln^{b})$的阳性有理数
Positive rational number of the form $φ(km^{a})/φ(ln^{b})$
论文作者
论文摘要
令$ k,l,a $和$ b $为正整数,$ \ max \ {a,\,b \} \ ge2 $。在本文中,我们表明每个正理性数字都可以写为$φ(km^{a})/φ(ln^{b})$的形式,其中$ m,\,n \ in \ in \ mathbb {n} $ if,仅在$ \ gcd(a,\ \ b)= 1 $ $或$(a,b)= 1 $或$(a,b)= 1 $或$(a,a,a,a,b)=(a,a,b,b)=(2)=(a,b)=(a,b)=(2),此外,如果$ \ gcd(a,b)> 1 $,那么这种表示的正确表示是唯一的。
Let $k, l, a$ and $b$ be positive integers with $\max\{a, \, b\}\ge2$. In this paper, we show that every positive rational number can be written as the form $φ(km^{a})/φ(ln^{b})$, where $m, \, n\in\mathbb{N}$ if and only if $\gcd(a, \,b)=1$ or $(a, b, k, l)=(2,2, 1, 1)$. Moreover, if $\gcd(a, b)>1$, then the proper representation of such representation is unique.