论文标题
来自单眼数据的快速非刚性辐射场
Fast Non-Rigid Radiance Fields from Monocularized Data
论文作者
论文摘要
动态场景的重建和新颖观点综合最近引起了人们的注意。由于大规模多视图数据的重建涉及巨大的内存和计算要求,因此最新的基准数据集提供了每个时间戳从多个(虚拟)摄像机采样的单眼视图的集合。我们将这种输入形式称为“单眼”数据。现有的工作显示了合成设置和面向前面的现实数据的令人印象深刻的结果,但通常在训练速度和角度范围内受到限制,以产生新的视图。本文解决了这些局限性,并提出了一种新的360°朝内的新方法的新方法,新的视图综合了非辅助变形场景。我们方法的核心是:1)有效的变形模块,该模块将处理空间和时间信息处理以加速训练和推理; 2)代表规范场景的静态模块是快速哈希编码的神经辐射场。除了现有的合成单眼数据外,我们还使用从同步的大规模多视图钻机中采样的新记录的挑战性数据集系统地分析了现实世界中向内的场景的性能。在这两种情况下,我们的方法都比以前的方法要快得多,在不到7分钟的时间内收敛,并以1K分辨率获得实时帧速率,同时获得了更高的视觉精度,以获得生成的新型视图。我们的源代码和数据可在我们的项目页面https://graphics.tu-bs.de/publications/kappel2022fast中获得。
The reconstruction and novel view synthesis of dynamic scenes recently gained increased attention. As reconstruction from large-scale multi-view data involves immense memory and computational requirements, recent benchmark datasets provide collections of single monocular views per timestamp sampled from multiple (virtual) cameras. We refer to this form of inputs as "monocularized" data. Existing work shows impressive results for synthetic setups and forward-facing real-world data, but is often limited in the training speed and angular range for generating novel views. This paper addresses these limitations and proposes a new method for full 360° inward-facing novel view synthesis of non-rigidly deforming scenes. At the core of our method are: 1) An efficient deformation module that decouples the processing of spatial and temporal information for accelerated training and inference; and 2) A static module representing the canonical scene as a fast hash-encoded neural radiance field. In addition to existing synthetic monocularized data, we systematically analyze the performance on real-world inward-facing scenes using a newly recorded challenging dataset sampled from a synchronized large-scale multi-view rig. In both cases, our method is significantly faster than previous methods, converging in less than 7 minutes and achieving real-time framerates at 1K resolution, while obtaining a higher visual accuracy for generated novel views. Our source code and data is available at our project page https://graphics.tu-bs.de/publications/kappel2022fast.