论文标题

使用不完美标签的人群密度估算

Crowd Density Estimation using Imperfect Labels

论文作者

Khan, Muhammad Asif, Menouar, Hamid, Hamila, Ridha

论文摘要

密度估计是人群计数最广泛使用的方法之一,其中深度学习模型从头脑注册的人群图像中学习,以估计看不见的图像中的人群密度。通常,模型的学习绩效受到注释的准确性和不准确注释的准确性很大,可能会导致预测期间的本地化和计数错误。使用完美标记的数据集中,人群计数上存在大量作品,但这些都没有探索注释错误对模型准确性的影响。在本文中,我们研究了不完美标签(嘈杂和缺失标签)对人群计数准确性的影响。我们提出了一个系统,该系统将使用深度学习模型(称为注释者)自动生成不完美的标签,然后将其用于训练新的人群计数模型(目标模型)。我们对两个人群计数模型和两个基准数据集的分析表明,所提出的方案的准确性更接近接受训练的模型的精度,该模型的精度显示了人群模型对注释错误的鲁棒性。

Density estimation is one of the most widely used methods for crowd counting in which a deep learning model learns from head-annotated crowd images to estimate crowd density in unseen images. Typically, the learning performance of the model is highly impacted by the accuracy of the annotations and inaccurate annotations may lead to localization and counting errors during prediction. A significant amount of works exist on crowd counting using perfectly labelled datasets but none of these explore the impact of annotation errors on the model accuracy. In this paper, we investigate the impact of imperfect labels (both noisy and missing labels) on crowd counting accuracy. We propose a system that automatically generates imperfect labels using a deep learning model (called annotator) which are then used to train a new crowd counting model (target model). Our analysis on two crowd counting models and two benchmark datasets shows that the proposed scheme achieves accuracy closer to that of the model trained with perfect labels showing the robustness of crowd models to annotation errors.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源