论文标题

与盲图图像超分辨率的降解建模的桥接组件学习

Bridging Component Learning with Degradation Modelling for Blind Image Super-Resolution

论文作者

Wu, Yixuan, Li, Feng, Bai, Huihui, Lin, Weisi, Cong, Runmin, Zhao, Yao

论文摘要

基于卷积神经网络(CNN)的图像超分辨率(SR)在已知降级的低分辨率(LR)图像上表现出了令人印象深刻的成功。但是,当降解过程未知时,这种方法在实际情况下很难保持其性能。尽管现有的盲目SR方法提出了使用模糊内核估计来解决此问题的方法,但感知质量和重建精度仍然不令人满意。在本文中,我们根据基于降解的公式模型分析了图像固有组件的高分辨率(HR)图像的降解。我们建议用于盲目SR的组件分解和合作网络(CDCN)。首先,CDCN将输入LR图像分解为特征空间中的结构和细节组件。然后,提出了相互协作块(MCB),以利用两个组成部分之间的关​​系。通过这种方式,细节组件可以提供内容丰富的特征来丰富结构上下文,并且结构组件可以携带结构上下文,从而通过相互互补的方式进行更好的细节揭示。之后,我们提出了一种降级驱动的学习策略,以共同监督人力资源图像细节和结构恢复过程。最后,一个多尺度融合模块,然后是UPS采样层旨在融合结构和细节特征并执行SR重建。通过这种基于降解的组件分解,协作和相互优化的能力,我们可以弥合盲目SR的组件学习与降解建模之间的相关性,从而以更准确的纹理产生SR结果。合成SR数据集和现实世界图像的广泛实验表明,与现有方法相比,所提出的方法实现了最先进的性能。

Convolutional Neural Network (CNN)-based image super-resolution (SR) has exhibited impressive success on known degraded low-resolution (LR) images. However, this type of approach is hard to hold its performance in practical scenarios when the degradation process is unknown. Despite existing blind SR methods proposed to solve this problem using blur kernel estimation, the perceptual quality and reconstruction accuracy are still unsatisfactory. In this paper, we analyze the degradation of a high-resolution (HR) image from image intrinsic components according to a degradation-based formulation model. We propose a components decomposition and co-optimization network (CDCN) for blind SR. Firstly, CDCN decomposes the input LR image into structure and detail components in feature space. Then, the mutual collaboration block (MCB) is presented to exploit the relationship between both two components. In this way, the detail component can provide informative features to enrich the structural context and the structure component can carry structural context for better detail revealing via a mutual complementary manner. After that, we present a degradation-driven learning strategy to jointly supervise the HR image detail and structure restoration process. Finally, a multi-scale fusion module followed by an upsampling layer is designed to fuse the structure and detail features and perform SR reconstruction. Empowered by such degradation-based components decomposition, collaboration, and mutual optimization, we can bridge the correlation between component learning and degradation modelling for blind SR, thereby producing SR results with more accurate textures. Extensive experiments on both synthetic SR datasets and real-world images show that the proposed method achieves the state-of-the-art performance compared to existing methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源