论文标题
四分之一的表面至卷保持等效性
Quartic surfaces up to volume preserving equivalence
论文作者
论文摘要
我们研究log calabi-yau对形式$(\ mathbb {p}^3,δ)$,其中$δ$是四分之一的表面,并将所有此类核心性对小于或等于一个的核心性分类,最多可保留等价。特别是,如果$(\ mathbb {p}^3,δ)$是最大的log calabi-yayau对,则我们证明它具有折叠模型。
We study log Calabi--Yau pairs of the form $(\mathbb{P}^3,Δ)$, where $Δ$ is a quartic surface, and classify all such pairs of coregularity less than or equal to one, up to volume preserving equivalence. In particular, if $(\mathbb{P}^3,Δ)$ is a maximal log Calabi--Yau pair then we show that it has a toric model.