论文标题
孤子在自偶发杂质模型中的量子效应
Quantum Effects of Solitons in the Self-Dual Impurity Model
论文作者
论文摘要
我们计算孤子的真空偏振能(VPE)在一个自dum杂质模型中,其中孤子曲线的形状具有分离的扭结 - 安替克对的形状。从经典上讲,在连续参数的变化下,孤子能量是不变的,可以解释为扭结 - 安提克克分离。 VPE并非如此,因此量子效应决定了最有利的分离。所考虑的配置在经典上是稳定的,因此其量子波动仅具有实际频率特征值。因此,与$ ϕ^4 $模型中的扭结 - 安提克克配置相反,VPE对于分离的任何值都很好地定义
We compute the vacuum polarization energies (VPE) of solitons in a self-dual impurity model in which the soliton profiles take the shape of a separated kink-antikink pair. Classically the soliton energies are invariant under the change of a continuous parameter that can be interpreted as the kink-antikink separation. This is not the case for the VPE so that quantum effects decide on the energetically most favorable separation. The considered configurations are classically stable so that its quantum fluctuations have only real frequency eigenvalues. Hence, in contrast to the kink-antikink configuration in the $ϕ^4$ model, the VPE is well defined for any value of the separation and we gain insight into the quantum corrections to the kink-antikink potential