论文标题

Te缺乏Zrte $ _2 $中的超导性

Superconductivity in Te-deficient ZrTe$_2$

论文作者

Correa, L. E., Ferreira, P. P., de Faria, L. R., Fim, V. M., da Luz, M. S., Torikachvili, M. S., Heil, C., Eleno, L. T. F., Machado, A. J. S.

论文摘要

我们在Zrte $ _ {1.8} $的高质量单晶上介绍了结构,电和热电势测量,从等温化学蒸气运输中生长。这些测量结果表明,缺乏te的zrte $ _ {1.8} $,形成与非perpoducducting zrte $ _2 $的结构相同的结构,在3.2 \,k以下是超导。上临界场(H $ _ {C2} $)的温度依赖性偏离了常规单波段超导体中预期的行为,通过Electron-Phonon两间隙超导模型,具有强型内耦合。对于Zrte $ _ {1.8} $单晶,Seebeck的电势测量表明,与从头算的计算一致,电荷载体主要是负面的。通过DFT内的第一原理计算,我们表明,Zrte $ _2 $的TE占用率略有下降,意外地使状态峰值的密度起源于Fermi级别的峰值,这是由于局部Zr- $ d $频段的形成,可能会促进Fermi级别的电子稳定性,并根据标准BCS理论在Fermi级别上提高了电子稳定性。这些发现凸显了TE缺陷促进了超导基态稳定性的电子条件,这表明缺陷可以微调电子结构以支持超导性。

We present structural, electrical, and thermoelectric potential measurements on high-quality single crystals of ZrTe$_{1.8}$ grown from isothermal chemical vapor transport. These measurements show that the Te-deficient ZrTe$_{1.8}$, which forms the same structure as the non-superconducting ZrTe$_2$, is superconducting below 3.2\,K. The temperature dependence of the upper critical field (H$_{c2}$) deviates from the behavior expected in conventional single-band superconductors, being best described by an electron-phonon two-gap superconducting model with strong intraband coupling. For the ZrTe$_{1.8}$ single crystals, the Seebeck potential measurements suggest that the charge carriers are predominantly negative, in agreement with the ab initio calculations. Through first-principles calculations within DFT, we show that the slight reduction of Te occupancy in ZrTe$_2$ unexpectedly gives origin to density of states peaks at the Fermi level due to the formation of localized Zr-$d$ bands, possibly promoting electronic instabilities at the Fermi level and an increase at the critical temperature according to the standard BCS theory. These findings highlight that the Te deficiency promotes the electronic conditions for the stability of the superconducting ground state, suggesting that defects can fine-tune the electronic structure to support superconductivity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源