论文标题

气氩时间投影室具有电致发光增强的光学读数

Gaseous argon time projection chamber with electroluminescence enhanced optical readout

论文作者

Amarinei, R. M, Sánchez, F., Roe, E., Bordoni, S., Giannessi, L., Lux, T, Radicioni, E.

论文摘要

加速器振荡中微子实验的系统不确定性主要来自描述中微子核相互作用的核模型。为了减轻这些不确定性,我们可以研究中微子核中的相互作用与具有增强的强子检测能力的探测器,其能量低于核费米水平。气态检测器不仅降低了颗粒检测阈值,而且还可以通过允许气体组成的变化来研究核对各种核的影响。这种方法为中微子核相互作用的建模提供了宝贵的见解,并显着减少了相关的不确定性。在这里,我们讨论了气态氩时间投影室的设计和首次操作。该检测器在大气压下运行,并具有基于厚宝石的单个电子扩增。在这里,光子是在真空紫外线状态下带有波长的。在光学检测器中,主要限制是光产率。这项研究探讨了通过在THGEM下游施加低电场来增加光产率的可能性。在该区域中,称为电致发光间隙,电子传播并激发氩原子,从而导致光子的随后发射。此过程无需任何其他电子扩增即可发生,并且证明,通过施加3 kV/cm的中等电场,总光率提高了三倍。最后,讨论了一种间接方法,用于确定THGEM的每个电荷增益的光子产量,并得出每个二次电子检测到的18.3光子的值。

Systematic uncertainties in accelerator oscillation neutrino experiments arise mostly from nuclear models describing neutrino-nucleus interactions. To mitigate these uncertainties, we can study neutrino-nuclei interactions with detectors possessing enhanced hadron detection capabilities at energies below the nuclear Fermi level. Gaseous detectors not only lower the particle detection threshold but also enable the investigation of nuclear effects on various nuclei by allowing for changes in the gas composition. This approach provides valuable insights into the modelling of neutrino-nucleus interactions and significantly reduces associated uncertainties. Here, we discuss the design and first operation of a gaseous argon time projection chamber optically read. The detector operates at atmospheric pressure and features a single stage of electron amplification based on a thick GEM. Here, photons are produced with wavelengths in the vacuum ultraviolet regime. In an optical detector the primary constraint is the light yield. This study explores the possibility of increasing the light yield by applying a low electric field downstream of the ThGEM. In this region, called the electroluminescence gap, electrons propagate and excite the argon atoms, leading to the subsequent emission of photons. This process occurs without any further electron amplification, and it is demonstrated that the total light yield increases up to three times by applying moderate electric fields of the order of 3~kV/cm. Finally, an indirect method is discussed for determining the photon yield per charge gain of a ThGEM, giving a value of 18.3 photons detected per secondary electron.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源