论文标题

基于分数的原子结构识别

Score-based denoising for atomic structure identification

论文作者

Hsu, Tim, Sadigh, Babak, Bertin, Nicolas, Park, Cheol Woo, Chapman, James, Bulatov, Vasily, Zhou, Fei

论文摘要

我们提出了一种去除热振动的有效方法,使分析冷凝物质原子模拟中复杂动态的任务变得复杂。我们的方法迭代地减去原子位置的热噪声或扰动,使用在合成噪声但其他完美的晶格上训练的deoising分数函数。由此产生的DeNOCH结构清楚地揭示了基础晶体顺序,同时保持与晶体缺陷相关的疾病。纯粹的几何,不可知论到原子势,并接受了未经显式模拟输入的训练,我们的DeNoiser可以应用于由截然不同的原子间相互作用产生的仿真数据。表明该诺式可以改善现有的分类方法,例如共同的邻居分析和多面体模板匹配,在最近的热扰动结构的最新基准数据集中达到完美的分类精度,直到熔点为熔点。在这里证明,在多种原子模拟环境中,Denoiser是一般,稳健且易于扩展的,可从结构和化学复杂的材料中的疾病中划定秩序。

We propose an effective method for removing thermal vibrations that complicate the task of analyzing complex dynamics in atomistic simulation of condensed matter. Our method iteratively subtracts thermal noises or perturbations in atomic positions using a denoising score function trained on synthetically noised but otherwise perfect crystal lattices. The resulting denoised structures clearly reveal underlying crystal order while retaining disorder associated with crystal defects. Purely geometric, agnostic to interatomic potentials, and trained without inputs from explicit simulations, our denoiser can be applied to simulation data generated from vastly different interatomic interactions. The denoiser is shown to improve existing classification methods such as common neighbor analysis and polyhedral template matching, reaching perfect classification accuracy on a recent benchmark dataset of thermally perturbed structures up to the melting point. Demonstrated here in a wide variety of atomistic simulation contexts, the denoiser is general, robust, and readily extendable to delineate order from disorder in structurally and chemically complex materials.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源