论文标题
MUS-CDB:混合不确定性抽样与类别分布平衡以进行空中对象检测的主动注释
MUS-CDB: Mixed Uncertainty Sampling with Class Distribution Balancing for Active Annotation in Aerial Object Detection
论文作者
论文摘要
最近的空中对象检测模型依赖大量标记的训练数据,这需要在具有密集物体的大型航空场景中无法承受的手动标记成本。主动学习通过选择性查询信息丰富和代表性的未标记样本有效地降低了数据标记成本。但是,现有的主动学习方法主要具有类平衡的设置和用于通用对象检测任务的基于图像的查询,由于长尾巴分布和空中场景中的密集的小物体,它们不适用于航空对象检测方案。在本文中,我们提出了一种新型的主动学习方法,用于具有成本效益的空中对象检测。具体而言,在对象选择中考虑了对象级和图像级信息,以避免冗余和近视查询。此外,还合并了易于使用的类平衡标准,以利用少数族裔对象,以减轻模型培训中长尾的课堂分配问题。我们进一步设计了培训损失,以挖掘未标记的图像区域中的潜在知识。在DOTA-V1.0和DOTA-V2.0基准上进行了广泛的实验,以验证所提出方法的有效性。对于DOTA-V2.0数据集上的Redet,KLD和SASM探测器,结果表明,我们提出的MUS-CDB方法可以节省近75%的标签成本,同时以MAP的方式实现与其他活跃学习方法可比性的性能。代码是公开在线的(https://github.com.com/zjw700/mus-mus-mus-mus-mus-muss)。
Recent aerial object detection models rely on a large amount of labeled training data, which requires unaffordable manual labeling costs in large aerial scenes with dense objects. Active learning effectively reduces the data labeling cost by selectively querying the informative and representative unlabelled samples. However, existing active learning methods are mainly with class-balanced settings and image-based querying for generic object detection tasks, which are less applicable to aerial object detection scenarios due to the long-tailed class distribution and dense small objects in aerial scenes. In this paper, we propose a novel active learning method for cost-effective aerial object detection. Specifically, both object-level and image-level informativeness are considered in the object selection to refrain from redundant and myopic querying. Besides, an easy-to-use class-balancing criterion is incorporated to favor the minority objects to alleviate the long-tailed class distribution problem in model training. We further devise a training loss to mine the latent knowledge in the unlabeled image regions. Extensive experiments are conducted on the DOTA-v1.0 and DOTA-v2.0 benchmarks to validate the effectiveness of the proposed method. For the ReDet, KLD, and SASM detectors on the DOTA-v2.0 dataset, the results show that our proposed MUS-CDB method can save nearly 75\% of the labeling cost while achieving comparable performance to other active learning methods in terms of mAP.Code is publicly online (https://github.com/ZJW700/MUS-CDB).