论文标题
MobileStx:在有限的培训示例给定有限的训练示例的情况下,稀疏编码气胸检测
MobilePTX: Sparse Coding for Pneumothorax Detection Given Limited Training Examples
论文作者
论文摘要
临时超声(POCUS)是指患者床边的临床医生表现和解释的超声检查。解释这些图像需要高水平的专业知识,在紧急情况下可能无法使用。在本文中,我们通过开发可以通过诊断患者是否患有气胸来帮助医疗专业人员来帮助医学专业人员来支持POCUS。我们使用Yolov4将任务分解为多个步骤,以提取视频的相关区域和3D稀疏编码模型来表示视频功能。考虑到获得积极培训视频的困难,我们培训了一个小型数据分类器,最多有15个正面和32个负面示例。为了抵消这一限制,我们利用主题专家(SME)知识来限制假设空间,从而降低了数据收集成本。我们使用两个肺超声数据集提出了结果,并证明我们的模型能够在气胸识别中与中小型企业的相同表现达到绩效。然后,我们开发了一个iOS应用程序,该应用程序在iPad Pro的不到4秒内运行了完整的系统,并且在iPhone 13 Pro上不到8秒,在肺部超声图中标记了关键区域以提供可解释的诊断。
Point-of-Care Ultrasound (POCUS) refers to clinician-performed and interpreted ultrasonography at the patient's bedside. Interpreting these images requires a high level of expertise, which may not be available during emergencies. In this paper, we support POCUS by developing classifiers that can aid medical professionals by diagnosing whether or not a patient has pneumothorax. We decomposed the task into multiple steps, using YOLOv4 to extract relevant regions of the video and a 3D sparse coding model to represent video features. Given the difficulty in acquiring positive training videos, we trained a small-data classifier with a maximum of 15 positive and 32 negative examples. To counteract this limitation, we leveraged subject matter expert (SME) knowledge to limit the hypothesis space, thus reducing the cost of data collection. We present results using two lung ultrasound datasets and demonstrate that our model is capable of achieving performance on par with SMEs in pneumothorax identification. We then developed an iOS application that runs our full system in less than 4 seconds on an iPad Pro, and less than 8 seconds on an iPhone 13 Pro, labeling key regions in the lung sonogram to provide interpretable diagnoses.