论文标题
优化用于投票和设施位置的多个同时目标
Optimizing Multiple Simultaneous Objectives for Voting and Facility Location
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We study the classic facility location setting, where we are given $n$ clients and $m$ possible facility locations in some arbitrary metric space, and want to choose a location to build a facility. The exact same setting also arises in spatial social choice, where voters are the clients and the goal is to choose a candidate or outcome, with the distance from a voter to an outcome representing the cost of this outcome for the voter (e.g., based on their ideological differences). Unlike most previous work, we do not focus on a single objective to optimize (e.g., the total distance from clients to the facility, or the maximum distance, etc.), but instead attempt to optimize several different objectives simultaneously. More specifically, we consider the $l$-centrum family of objectives, which includes the total distance, max distance, and many others. We present tight bounds on how well any pair of such objectives (e.g., max and sum) can be simultaneously approximated compared to their optimum outcomes. In particular, we show that for any such pair of objectives, it is always possible to choose an outcome which simultaneously approximates both objectives within a factor of $1+\sqrt{2}$, and give a precise characterization of how this factor improves as the two objectives being optimized become more similar. For $q>2$ different centrum objectives, we show that it is always possible to approximate all $q$ of these objectives within a small constant, and that this constant approaches 3 as $q\rightarrow \infty$. Our results show that when optimizing only a few simultaneous objectives, it is always possible to form an outcome which is a significantly better than 3 approximation for all of these objectives.