论文标题

具有所有(分数)$ [a,b] $的图形的光谱条件 - 因素

Spectral conditions for graphs having all (fractional) $[a,b]$-factors

论文作者

Zheng, Jiaxin, Wang, Junjie, Huang, Xueyi

论文摘要

令$ a \ leq b $为两个正整数。我们说,图$ g $具有所有$ [a,b] $ - 如果每个函数都有$ h $ factor $ h:v(g)\ rightarrow \ mathbb {z}^+$,以便所有$ a \ le h(v)\ le h(v)\ le b $ in V(g)$和$ \ sum_ qu \ sum_ emod que(v) 2 $,并且具有所有分数$ [a,b] $ - 如果每个$ p:v(g)\ rightArrow \ mathbb {z}^+$具有分数$ p $ factor,则$ a \ le p(v)\ le p(v)\ le B $ in V(g)$ in v(g)$。在本文中,我们为所有$ [a,b] $ - 因子($ 3 \ leq a <b $)和所有分数$ [a,b] $ - 因子($ 1 \ leq a <b $)提供了紧密的光谱半径条件。

Let $a\leq b$ be two positive integers. We say that a graph $G$ has all $[a,b]$-factors if it has an $h$-factor for every function $h: V(G)\rightarrow \mathbb{Z}^+$ such that $a\le h(v) \le b$ for all $v\in V(G)$ and $\sum_{v\in V(G)}h(v)\equiv 0\pmod 2$, and has all fractional $[a,b]$-factors if it has a fractional $p$-factor for every $p: V(G) \rightarrow \mathbb{Z}^+$ such that $a\le p(v)\le b$ for all $v\in V(G)$. In this paper, we provide tight spectral radius conditions for graphs having all $[a,b]$-factors ($3\leq a<b$) and all fractional $[a,b]$-factors ($1\leq a<b$), respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源