论文标题
关于E $ $(N)$模型的Epsilon扩展的评论
Comments on epsilon expansion of the O$(N)$ model with boundary
论文作者
论文摘要
在边界存在下的o $(n)$ vector模型在$(4-ε)$尺寸中具有非平凡的固定点,并表现出由边界共形场理论描述的关键行为。通过示意图和公理方法,以$ε$扩展的领先顺序研究边界运算符的光谱。在后者中,我们将Rychkov和TAN的框架框架扩展到了边界,并计算边界复合算子的共形维度,并注意相关函数的分析性。在这两种方法中,我们都会获得一致的结果。
The O$(N)$ vector model in the presence of a boundary has a non-trivial fixed point in $(4-ε)$ dimensions and exhibits critical behaviors described by boundary conformal field theory. The spectrum of boundary operators is investigated at the leading order in the $ε$-expansion by diagrammatic and axiomatic approaches. In the latter, we extend the framework of Rychkov and Tan for the bulk theory to the case with a boundary and calculate the conformal dimensions of boundary composite operators with attention to the analyticity of correlation functions. In both approaches, we obtain consistent results.