论文标题
连环的稳定性用于双曲线消失的平均曲率方程外部对称性
Stability of the Catenoid for the Hyperbolic Vanishing Mean Curvature Equation Outside Symmetry
论文作者
论文摘要
我们研究了catenoid的稳定性问题,是欧几里得空间中渐近平坦的旋转对称的最小表面,被视为Minkowski空间中双曲线消失的平均曲率方程的固定解决方案。后者是构成欧几里得空间中最小表面方程的双曲线对应物的准电波方程。我们的主要结果是非线性渐近稳定性,适当的翻译和增强(即调制),是$ n $二维的链式固醇,相对于一组无具有任何对称性假设的一组初始数据扰动,以$ n \ geq 5 $。鉴于内核以及catenoid的稳定性操作员的独特简单特征值,调制和编成数据的限制是必要和最佳的。 在更广泛的背景下,本文符合孤儿稳定问题研究的悠久传统。从这个角度来看,我们的目的是解决由于基本双曲方程的准性质而引起的一些新问题。本文介绍的想法包括一个新的配置文件构建和调制分析,以跟踪固定解决方案的翻译和增强参数的演变,这是一种新的方案,用于证明局部能量衰减,用于在质量和调制理论环境中扰动,以及在动态翻译和BOOSTSERESES的情况下对VectorField方法的适应。
We study the problem of stability of the catenoid, which is an asymptotically flat rotationally symmetric minimal surface in Euclidean space, viewed as a stationary solution to the hyperbolic vanishing mean curvature equation in Minkowski space. The latter is a quasilinear wave equation that constitutes the hyperbolic counterpart of the minimal surface equation in Euclidean space. Our main result is the nonlinear asymptotic stability, modulo suitable translation and boost (i.e., modulation), of the $n$-dimensional catenoid with respect to a codimension one set of initial data perturbations without any symmetry assumptions, for $n \geq 5$. The modulation and the codimension one restriction on the data are necessary and optimal in view of the kernel and the unique simple eigenvalue, respectively, of the stability operator of the catenoid. In a broader context, this paper fits in the long tradition of studies of soliton stability problems. From this viewpoint, our aim here is to tackle some new issues that arise due to the quasilinear nature of the underlying hyperbolic equation. Ideas introduced in this paper include a new profile construction and modulation analysis to track the evolution of the translation and boost parameters of the stationary solution, a new scheme for proving integrated local energy decay for the perturbation in the quasilinear and modulation-theoretic context, and an adaptation of the vectorfield method in the presence of dynamic translations and boosts of the stationary solution.