论文标题

图像脱毛的对称技术

Symmetrization Techniques in Image Deblurring

论文作者

Donatelli, Marco, Ferrari, Paola, Gazzola, Silvia

论文摘要

本文介绍了几种预处理技术,可用于增强用于与各种点扩散功能(PSF)和边界条件的迭代正则化方法的性能。更确切地说,我们首先考虑反认同预处理,该预性预处理对称与零边界条件问题相关的系数矩阵,从而允许将微小提示用作正则化方法。当考虑更复杂的边界条件和强烈的非对称PSF时,反认同预处理会改善GMRE的性能。然后,我们考虑固定和迭代依赖性循环循环预处理,这些预处理与反认同矩阵以及标准和灵活的Krylov子空间相关,并加快了迭代速度。在特殊情况下,证明了有关预处理矩阵特征值的聚类的理论结果。据报道,许多数值实验的结果显示了新的预处理技术的有效性,包括在考虑稀疏图像的脱毛时。

This paper presents a couple of preconditioning techniques that can be used to enhance the performance of iterative regularization methods applied to image deblurring problems with a variety of point spread functions (PSFs) and boundary conditions. More precisely, we first consider the anti-identity preconditioner, which symmetrizes the coefficient matrix associated to problems with zero boundary conditions, allowing the use of MINRES as a regularization method. When considering more sophisticated boundary conditions and strongly nonsymmetric PSFs, the anti-identity preconditioner improves the performance of GMRES. We then consider both stationary and iteration-dependent regularizing circulant preconditioners that, applied in connection with the anti-identity matrix and both standard and flexible Krylov subspaces, speed up the iterations. A theoretical result about the clustering of the eigenvalues of the preconditioned matrices is proved in a special case. The results of many numerical experiments are reported to show the effectiveness of the new preconditioning techniques, including when considering the deblurring of sparse images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源