论文标题
图像脱毛的对称技术
Symmetrization Techniques in Image Deblurring
论文作者
论文摘要
本文介绍了几种预处理技术,可用于增强用于与各种点扩散功能(PSF)和边界条件的迭代正则化方法的性能。更确切地说,我们首先考虑反认同预处理,该预性预处理对称与零边界条件问题相关的系数矩阵,从而允许将微小提示用作正则化方法。当考虑更复杂的边界条件和强烈的非对称PSF时,反认同预处理会改善GMRE的性能。然后,我们考虑固定和迭代依赖性循环循环预处理,这些预处理与反认同矩阵以及标准和灵活的Krylov子空间相关,并加快了迭代速度。在特殊情况下,证明了有关预处理矩阵特征值的聚类的理论结果。据报道,许多数值实验的结果显示了新的预处理技术的有效性,包括在考虑稀疏图像的脱毛时。
This paper presents a couple of preconditioning techniques that can be used to enhance the performance of iterative regularization methods applied to image deblurring problems with a variety of point spread functions (PSFs) and boundary conditions. More precisely, we first consider the anti-identity preconditioner, which symmetrizes the coefficient matrix associated to problems with zero boundary conditions, allowing the use of MINRES as a regularization method. When considering more sophisticated boundary conditions and strongly nonsymmetric PSFs, the anti-identity preconditioner improves the performance of GMRES. We then consider both stationary and iteration-dependent regularizing circulant preconditioners that, applied in connection with the anti-identity matrix and both standard and flexible Krylov subspaces, speed up the iterations. A theoretical result about the clustering of the eigenvalues of the preconditioned matrices is proved in a special case. The results of many numerical experiments are reported to show the effectiveness of the new preconditioning techniques, including when considering the deblurring of sparse images.