论文标题

Perfex:值得信赖的AI系统的分类器性能说明

PERFEX: Classifier Performance Explanations for Trustworthy AI Systems

论文作者

Walraven, Erwin, Adhikari, Ajaya, Veenman, Cor J.

论文摘要

当部署在现实世界的决策支持系统中时,分类模型的解释性至关重要。解释使用户可以采取预测,并应告知系统的功能和局限性。但是,现有的解释方法通常仅提供个人预测的解释。有关分类器能够支持决策者的条件的信息,例如,有关系统何时无法区分类的信息可能非常有帮助。在开发阶段,它可以支持搜索新功能或组合模型,在操作阶段,它支持决策者决定例如不使用系统。本文提出了一种解释训练有素的基本分类器的质量的方法,称为“绩效解释器”(Perfex)。我们的方法由一种元树学习算法组成,该算法能够预测和解释基本分类器具有高或低错误或任何其他分类性能指标。我们使用多个分类器和数据集评估了Perfex,包括具有城市流动性数据的案例研究。事实证明,即使基本分类器几乎无法区分类别,同时提供紧凑的性能解释,即使Perfex通常具有高元预测性能。

Explainability of a classification model is crucial when deployed in real-world decision support systems. Explanations make predictions actionable to the user and should inform about the capabilities and limitations of the system. Existing explanation methods, however, typically only provide explanations for individual predictions. Information about conditions under which the classifier is able to support the decision maker is not available, while for instance information about when the system is not able to differentiate classes can be very helpful. In the development phase it can support the search for new features or combining models, and in the operational phase it supports decision makers in deciding e.g. not to use the system. This paper presents a method to explain the qualities of a trained base classifier, called PERFormance EXplainer (PERFEX). Our method consists of a meta tree learning algorithm that is able to predict and explain under which conditions the base classifier has a high or low error or any other classification performance metric. We evaluate PERFEX using several classifiers and datasets, including a case study with urban mobility data. It turns out that PERFEX typically has high meta prediction performance even if the base classifier is hardly able to differentiate classes, while giving compact performance explanations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源